【综述 】 知识图谱(Knowledge graph)链路预测(Link Prediction)

该研究深入比较了16种最新的知识图谱嵌入方法在链路预测任务上的表现,扩展了标准评估的范围,包括对不同损失函数、约束和空间复杂度的分析。在5个数据集上进行实验,揭示了模型的有效性和效率。论文首次提供了全面的评估,挑战了仅关注过度表示实体的现状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Knowledge Graph Embedding for Link Prediction: A Comparative Analysis

  • 作者:Andrea Rossi、Donatella Firmani、Antonio Matinata、Paolo Merialdo、Denilson Barbosa

  • 论文链接:https://arxiv.org/pdf/2002.00819.pdf

摘要:知识图谱(Knowledge graph, KGs)在工业和学术领域有很多应用,这反过来又推动了从各种来源大规模提取信息的研究工作。尽管付出了诸多努力,但不得不承认最先进的知识图谱也是不完整的。链路预测(Link Prediction, LP)是一种根据知识图谱中的已存在实体去预测缺失事实的任务,它是一种有前途、广泛研究且旨在解决知识图谱不完整性的任务。

在最近,基于知识图谱嵌入的链路预测技术在一些基准测试中实现了良好的性能。尽管这方面的研究文献在快速增加,但对这些方法中不同设计选择的影响却没有投以充分的注意。此外,这一领域的标准做法是测试大量的事实来报告准确性,其中一些实体被过度表示;这使得链路预测方法只修改包含这些实体的结构属性来展示良好的性能,而忽略知识图谱的主要部分。

因此,在这篇综述论文中,来自罗马第三大学和阿尔伯塔大学的研究者对基于嵌入的链路预测方法进行全面比较,将分析维度扩展到常见的文献范围之外。他们通过实验比较了 16 种当前 SOTA 方法的有效性和效率,考虑到了一个基于规则的基准,并提供了文献中最流行基准的详细分析。

本研究中链路预测模型的分类。

本研究对比分析中模型的损失函数、约束和空间复杂度。

本研究对比分析中采用的 5 个链路预测数据集以及它们的常规属性。

每个链路预测模型在 5 个数据集上的训练时长。

推荐:这篇长达 43 页的综述论文首次对基于知识图谱嵌入的链路预测模型进行了全面的对比分析,囊括 16 个方法和架构各异的链路预测模型,并在 5 个最流行的数据集上验证了它们的有效性和效率。

### 知识图谱嵌入方法在链接预测中的应用 #### 背景介绍 知识获取瓶颈一直是人工智能领域的一个核心挑战,即如何以经济高效的方式将知识捕获到选定的表示形式中[^1]。随着机器学习技术的发展,自动化的部分知识工程成为可能,这推动了当前一代的知识图谱嵌入技术和链接预测模型的进步。 #### 方法概述 知识图谱嵌入旨在通过低维向量空间来表示实体及其关系,从而使得这些表示能够捕捉复杂的语义信息并用于各种下游任务,特别是链接预测。给定用户-项目交互矩阵 \(Y\)知识图谱 \(G\) ,目标是预测用户 \(u\) 是否有可能对之前未互动过的项目 \(v\) 感兴趣。具体来说,就是学习一个预测函数: \[y_{uv} = F(u, v | \Theta, Y, G)\] 其中 \(y_{uv}\) 表示用户 \(u\) 将会与项目 \(v\) 发生互动的概率,而 \(\Theta\) 是该预测函数的参数集[^4]。 #### 嵌入机制 为了实现上述目标,通常采用异构图结构来进行建模,在这种情况下,不仅考虑节点之间的直接连接,还会利用不同类型的关系以及属性特征。例如,对于零样本识别问题,可以通过构建基于语义嵌入和知识图谱的方法来解决,这种方法可以有效地处理从未见过的数据类别[^2]。 此外,针对不同类型的边(即不同的关系),还可以设计特定的消息传递机制或注意力机制,以便更好地聚合邻居的信息,进而提高链接预测性能。这类工作已经在多个研究工作中得到了验证,比如使用图神经网络进行少样本学习的研究也证明了这一点[^3]。 ```python import torch from torch_geometric.nn import MessagePassing class LinkPredictionModel(MessagePassing): def __init__(self, input_dim, hidden_dim, output_dim): super(LinkPredictionModel, self).__init__() self.linear = torch.nn.Linear(input_dim * 2, hidden_dim) self.output_layer = torch.nn.Linear(hidden_dim, output_dim) def forward(self, edge_index, node_features): source_nodes, target_nodes = edge_index combined_features = torch.cat([node_features[source_nodes], node_features[target_nodes]], dim=-1) h = torch.relu(self.linear(combined_features)) logits = self.output_layer(h) return logits ``` 此代码片段展示了一个简单的消息传递框架下的链接预测模型架构,它接收边缘索引和节点特征作为输入,并返回每条潜在链接存在的可能性得分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI知识图谱大本营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值