计算神经网络参数量Params、计算量FLOPs(亲测有效的3种方法)

本文介绍了通过torchstat、torchsummary和thop库来统计神经网络的参数量Params和计算量FLOPs,但这些方法在面对含有自定义参数的网络时可能无法准确统计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.stat(cpu统计)

pip install torchstat

from torchstat import stat

stat(model, (3, 32, 32)) #统计模型的参数量和FLOPs,(3,32,32)是输入图像的size

结果:

 问题:当网络中有自定义参数时,就很有可能漏掉那部分参数对应的统计量;stat好像不支持双输入。

2.summary网络结构对应参数(cuda上面统计)

pip install torchsummary

from torchsummary import summary

summary(model,input_size=(3,32,32))

问题:当网络中有自定义参数时,就很有可能漏掉那部分参数。
结果:

3.统计flops和参数量

pip install thop

from thop import profile

dummy_input = torch.randn(1, 3, 32, 32)#.to(device)

flops, params = profile(model, (dummy_input,))

print('FLOPs: ', flops, 'params
### 如何计算神经网络参数量FLOPs #### 参数量 (Params) 参数量指的是模型中可训练参数的数量总和。对于卷积层而言,其参数数量可以通过下面的方式得出: \[ \text{params} = (\text{kernel height} * \text{kernel width} * \text{input channels} + 1) * \text{output channels} \] 其中,“+1”代表偏置项(bias),如果该层不使用偏置,则无需加上这一部分。 对于全连接层来说,参数数目等于输入节点数乘以输出节点数再加上一个偏置向量[^4]。 为了统计整个网络中的参数总量,在Python环境下可以利用PyTorch框架提供的接口遍历所有层并累加各层参数: ```python total_params = sum(p.numel() for p in model.parameters()) print(f'Total number of parameters: {total_params}') ``` 这段代码会返回给定`model`对象内所有的可训练参数之和[^5]。 #### 浮点运算次数 (FLOPs) 浮点操作数(Floating Point Operations Per Second, FLOPs),用于描述执行一次前向传播过程中涉及了多少次基本数学运算(比如加法、减法、乘法)。它不仅取决于权重矩阵尺寸还关联到激活函数的选择等因素。 针对不同类型的层有不同的估算方式;例如标准二维卷积层的理论FLOPs可通过如下公式近似估计: \[ \text{FLOPs}_{conv2d} = 2 * W_{out}H_{out}\times C_{in}\times K_hK_w\times C_{out}/S^2 \] 这里\(W_{out}, H_{out}\)表示输出特征图宽高,\(C_{in}, C_{out}\)分别是输入输出通道数,\(K_h,K_w\)为核大小而\(S\)则是步幅(step size)[^3]。 实际应用中推荐借助第三方库如`thop`来自动化获取更精确的结果: ```python from thop import profile macs, params = profile(model, inputs=(input_tensor,)) print('Computational complexity:', macs) print('Number of parameters:', params) ``` 上述脚本能够方便快捷地得到指定模型及其输入张量组合下的MACs(Multiply-Accumulate operations)与参数计数[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值