【结肠息肉AI论文集】Cross-level Feature Aggregation Network for Polyp Segmentation

标注:同样是一期结肠息肉论文写作评鉴 

摘要

从结肠镜图像中准确分割息肉在结直肠癌的诊断和治疗中起着关键作用。尽管在息肉分割领域已经取得了一定的成效,但仍存在诸多挑战。息肉通常具有多种大小和形状,并且息肉与其周围区域之间没有明显的边界(息肉分割的难点)。为应对这些挑战,我们提出了一种新颖的跨层特征聚合网络(CFA-Net)用于息肉分割。具体来说,我们首先提出了一个边界预测网络,用于生成具有边界感知能力的特征,这些特征通过逐层策略被整合到分割网络中。特别地,我们设计了一个基于双流结构的分割网络,以利用跨层特征中的层次化语义信息。此外,我们提出了一个跨层特征融合(CFF)模块,用于整合来自不同层次的相邻特征,能够表征跨层和多尺度信息,以应对息肉的尺度变化。进一步地,我们提出了一个边界聚合模块(BAM),将边界信息整合到分割网络中,增强这些层次化特征以生成更精细的分割图。在五个公共数据集上进行的定量和定性实验表明,与其它最先进的息肉分割方法相比,我们的CFA-Net具有更高的有效性。源代码和分割图将在 [GitHub - taozh2017/CFANet](https://github.com/taozh2017/CFANet) 发布。论文写写出息肉的难点(①多种size和形状②没有明显边界),然后根据网络本身的数据流概述自己提出的模块(如边界预测、双流结构分割、CFF、BAM),这几个模块的介绍格式为:先概述该模块是怎么怎么做的,再介绍这样做是针对哪些分割难点。

引言

简简单单的的起手:介绍结肠癌背景

结直肠癌(CRC)是全球第三大常见癌症。CRC通常起源于腺瘤性息肉,如果任其发展,息肉通常需要10至15年才能发展成癌症。因此,有效检测和切除息肉可以预防CRC的发生,并显著降低死亡率。为了降低死亡率,早期检测和评估息肉至关重要。对于初步评估,临床医生常用的程序是识别腺瘤性息肉,然后由经过专业训练的临床医生手动在结肠镜图像中勾勒出息肉。然而,手动检测和分割息肉耗时且主观性强。因此,有效的解决方案是开发自动息肉分割算法,以帮助临床医生准确地定位和分割息肉区域,以便进行进一步的诊断。

息肉在不同的发展阶段会随着时间而变化,并且具有多种大小和形状,这使得它们的准确分割具有挑战性(见图1)。此外,由于息肉与其周围黏膜之间存在高度的内在相似性,分割息肉也较为困难。(第二段开头简单概述目前分割的难点)为了应对这些挑战,各种深度学习模型已经开发出来,并在息肉分割方面展现出良好的性能。例如,Akbari等人采用全卷积网络(FCN)和Otsu阈值分割来提取最大的连通区域以进行息肉分割。Sun等人提出了一种基于FCN的息肉分割框架,在该框架中引入了扩张卷积,用于在不降低分辨率的情况下学习高级语义特征。此外,具有编码器-解码器结构的UNet基础方法在息肉分割方面也展现出了良好的性能。在这些方法中,解码器中的高级特征逐渐被上采样,并通过跳跃连接与编码器中相应的低级特征融合,其中高级语义和低级上下文信息可以被有效整合。UNet架构的两个变体,ResUNet++和UNet++,已经被开发用于息肉分割,并取得了令人满意的性能。然而,上述方法通常专注于分割息肉的整个区域,而忽略了某些有价值的边界信息。为了克服这一问题,一些工作引入了区域-边界约束,或者构建了多任务框架以提取轮廓信息,以提高分割性能。此外,Fan等人利用逆向注意力(RA)模块来利用边界线索,这有助于准确地分割息肉。(后面的现有方法简单介绍按照:网络格式(FCN/ 编码解码)、边界约束的流程介绍先前的工作,边界约束是息肉分割中一个很重要的研究分支。但是我感觉这里有点不足,因为介绍的网络都是很久之前的工作, 这篇论文是2023年的)

尽管在自动息肉分割领域已经取得了一定的成效,但现有方法仍面临几个挑战。首先,在平坦病变或肠道清洁不彻底的情况下,息肉与其背景之间的边界并不清晰,导致分割结果不准确。因此,利用边界信息至关重要,它为建立息肉区域与边界线索之间的相关性提供了边界感知指导。其次,尺度变化是息肉分割中的一个主要挑战,如何有效地从卷积层中表征多尺度信息值得进一步探索。第三,卷积神经网络(CNN)由一系列多尺度卷积层组成。较浅的层保留了结构细节(例如边界),而较深的层编码高级语义信息以定位息肉区域。因此,有效地整合深度语义和结构特征以生成最终分割图是一个挑战。(怎么说呢,首先这篇论文对息肉分割难点的总结是很好的,概述的很清楚,但是感觉和第二段开头重复了,还是博主主页那一篇Shallow Attention Network for Polyp Segmentation的结构更好,可以将两篇的优点结合起来)

为此,我们提出了一种跨层特征聚合网络(CFA-Net),用于息肉分割,它包括一个边界预测网络和一个息肉分割网络。边界预测网络专门设计用于生成具有边界感知能力的特征,这些特征通过逐层策略被整合到息肉分割网络中,以提升分割性能。在息肉分割网络中,提出了一个双流结构来捕获层次化的语义信息。此外,提出了一个跨层特征融合(CFF)模块来整合来自不同层次的相邻特征,在其中也可以捕获多尺度上下文信息,以应对息肉的尺度变化。此外,提出了一个边界聚合模块(BAM),以有效地将边界感知特征整合到分割网络中。最后,构建了一个统一的框架,同时进行边界预测和息肉分割,边界信息可以被充分捕获以增强分割网络中的层次化特征,从而产生更精细的分割结果。(以总分的结构介绍model,总1:边界预测,总2:息肉分割。然后开始介绍分部,CFF和BAM。)

(贡献总结,简简单单的先介绍自己提出的结构,然后最后再介绍自己的效果。)

本文的主要贡献总结如下:

  • 提出了一种新颖的跨层特征聚合网络,同时利用边界信息并捕获层次化的语义信息,以准确分割息肉。

  • 提出了一个跨层特征融合模块,充分利用相邻层的特征,同时在不同尺度上进行跨层特征融合,以应对尺度变化。

  • 提出了一个边界聚合模块,捕获边界上下文信息,然后将其整合到息肉分割网络中,可以克服不准确的边界预测,以提升分割性能。

  • 在五个公共结肠镜数据集上进行了广泛的实验,结果表明,所提出的CFA-Net优于其他最先进的息肉分割方法。同时,全面的消融研究验证了所提出模型中所有关键组件的有效性。

本文的其余部分安排如下。我们在第2节讨论与我们模型相关的三种类型的工作。我们在第3节描述了我们提出的CFA-Net用于息肉分割的框架。在第4节中,我们提供实验设置、比较结果和消融研究。最后,我们在第5节总结本文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值