Stable Diffssion超详细讲解持续更新中

Stable Diffusion超详细解释

https://zhuanlan.zhihu.com/p/632809634

文本-->clip text encoder -->text Embeddings特征矩阵

完成对文本信息的编码后,就会输入到SD模型的“图像优化模块”中对图像的优化进行“控制”。

 

如果是图生图任务,我们在输入文本信息的同时,还需要将原图片通过图像编码器(VAE Encoder)生成Latent Feature(隐空间特征)作为输入。

如果是文生图任务,我们只需要输入文本信息,再用random函数生成一个高斯噪声矩阵作为Latent Feature的“替代”输入到SD模型的“图像优化模块”中.

Stable Diffusion整体的训练逻辑:

  1. 从数据集中随机选择一个训练样本
  2. 从K个噪声量级随机抽样一个timestep 𝑡
  3. 将timestep 𝑡对应的高斯噪声添加到图片中
  4. 将加噪图片输入U-Net中预测噪声
  5. 计算真实噪声和预测噪声的L2损失
  6. 计算梯度并更新SD模型参数

clip

vae

unet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值