最近在用本地大模型跑实验,一开始选择了ollama,分别部署了Qwen2.5-14B和Qwen2.5-32B,发现最后跑出来的实验效果很差,一开始一直以为prompt的问题,尝试了不同的prompt,最后效果还是一直不好。随后尝试了vllm部署Qwen2.5-14B,竟然发现指标提升了好多【不太清楚为什么最终效果能差这么多】…也有点迷惑,所以这篇文章就分析一下ollama和vllm有什么不同
Ollama
基本介绍
Ollama是一个支持在Windows、Linux和MacOS上本地运行大语言模型的工具。它允许用户非常方便地运行和使用各种大语言模型,比如Qwen模型等。用户只需一行命令就可以启动模型。
主要特点
- 跨平台支持Windows、Linux、MacOS系统。
- 提供了丰富的模型库,包括Qwen、Llama等1700+大语言模型,可以在官网model library中直接下载使用。
- 支持用户上传自己的模型。用户可以将huggingface等地方的ggml格式模型导入到ollama中使用。也可以将基于pytorch等格式的模型转换为ggml格式后导入。
- 允许用户通过编写modelfile配置文件来自定义模型的推理参数,如temperature、top_p等,从而调节模型生成效果。
- 支持多GPU并行推理加速。在多卡环境下,可以设置环境变量来指定特定GPU。
总的来说Ollama降低了普通开发者使用大语言模型的门槛,使得本地部署体验大模型变得简单易行。对于想要搭建自己的AI应用,或者针对特定任务调优模型的开发者来说,是一个非常有用的工具。它的一些特性,如允许用户自定义模型参数,对模型进行个性化适配提供了支持。
官网
-
Ollama 下载:https://ollama.com/download
-
Ollama 官方主页:https: