Langchain4j

Langchain4j

一、Langchain4j 主要功能

1.与大语言模型(LLM)和向量数据库的便捷交互
  • 适用于构建聊天机器人、智能助手、检索问答系统等应用。
2.智能代理、工具调用、检索增强生成(RAG)
  • 支持提示词模板创建、聊天记忆管理、输出解析等。
  • 为 LLM 操作提供了丰富的扩展能力,包括函数调用和代理执行。

二、核心组件与工具

1. 文档加载器
  • 用于从多种来源读取文档(如PDF、Word、网页等),供后续切分和向量化处理。
2. 聊天记忆实现(Chat Memory)
  • 支持临时或持久化保存对话上下文,实现多轮对话。

三、提示词(Prompt)

1. 系统提示词(System Message)
  • 使用 @SystemMessage 注解,设定 AI 助手角色和能力范围。
  • 注意:仅首次对话中发送给大模型;修改提示词会使已有聊天记忆失效。
  • 可配置为从资源文件中加载模板。
2. 用户提示词模板(User Message)
  • 使用 @UserMessage 获取用户输入。
  • 可通过 @V 注解明确指定参数名,便于变量替换。

四、函数调用(Function Calling / Tools)

1. 创建工具类
  • 使用 @Tool 注解的方法将被注册为可调用函数。
@Tool(name = "计算总价", value = "根据单价和数量计算商品总价")
public double calcTotal(@P(value = "单价", required = true) double price,
                        @P(value = "数量", required = true) int count) {
    return price * count;
}
  • 参数使用 @P 注解,提供描述和是否必填的配置。

五、聊天记忆(Chat Memory)

  • 支持多种记忆模式:临时、持久化。
  • 可与提示词结合增强多轮对话能力。

六、提示词模板系统

  • 支持从 YAML、JSON、静态文件中加载提示模板,支持动态参数注入。

七、RAG:检索增强生成(Retrieval Augmented Generation)

1. 定义
  • 在将用户问题发给 LLM 前,先从外部知识库中检索相关信息,并与原始问题一并发送,生成更专业回答。
2. 优缺点对比:
方法优点缺点应用场景
RAG知识实时更新,不依赖模型训练,成本低两次查询,性能略低客服、法律、医疗、新闻
微调 LLM准确性高,性能快成本高、更新慢文学创作、规范文档
RAG + 微调灵活结合优点实现复杂高准确性且需更新的系统

八、RAG 检索方式

1. 全文搜索(关键词匹配)
  • 基于 TF-IDF 等方法,匹配词频和相关性。
2. 向量搜索(语义匹配)
  • 通过嵌入模型将文本转为向量,计算相似度(如余弦相似度)进行匹配。
3. 混合搜索
  • 将全文搜索与向量搜索结合,提升检索效果。

九、文本分段与嵌入处理

为什么要分段?
  • xLLM 上下文窗口有限。
  • 太多上下文会增加响应延迟和成本。
  • 精细分段有助于减少幻觉、提高响应质量。
分段 + 嵌入流程:
文档加载 => 文本分段 => 嵌入模型生成向量 => 存入向量数据库

十、检索阶段流程(RAG)

用户查询 => 嵌入为向量 => 相似度匹配 => 返回内容片段 + 原始问题给 LLM => 返回答案

十一、向量数据库 Pinecone 使用

得分含义(Score)
  • 衡量查询向量与文档向量的相似程度,通常基于余弦相似度等。
应用:
  • minScore 阈值设置可提升结果质量:
    • 设置 minScore(0.8):仅返回得分 ≥ 0.8 的结果。
    • 可调节准确率召回率的平衡。

十二、相似度测量方式

名称说明
欧几里得距离直线距离
曼哈顿距离网格步长之和
点积向量乘积,反映方向一致性
余弦相似度衡量两个向量夹角,常用于语义匹配

十三、文档加载与解析组件

  • 文档加载器:支持多种格式的知识源输入。
  • 文档解析器:抽取纯文本内容。
  • 文档分割器:按段、句等规则拆分文档用于向量化。

十四、流式输出(Streaming)

  • LLM 可边生成边输出响应,无需等待全部结果返回。
  • 优点:
    • 降低等待时间
    • 改善用户体验,提升交互自然性

十五、Ollama 本地部署(配合 Langchain4j)

优势:
  • 数据隐私与安全保障
  • 支持离线推理,适用于无公网场景
  • 大幅降低 LLM 使用成本
  • 部署流程简便,支持本地 LLM 模型调用
  • 易于根据业务需求定制与扩展
### LangChain4j 使用教程与资源汇总 #### 项目文档与下载链接 LangChain4j 是一个专为 Java 开发者设计的库,用于简化 AI 和大型语言模型 (LLM) 能力在 Java 应用中的集成。官方提供了详细的入门指南以及多个示例项目来辅助学习和应用该技术。 对于希望获取最新版本并深入了解此工具集的人来说,可以从 GitHub 或其他托管平台上找到完整的源码仓库[^2]。具体来说,可以通过访问 [LangChain4j GitCode](https://gitcode.com/gh_mirrors/la/langchain4j),在这里可以浏览整个项目的文件夹结构,并按照说明进行克隆操作以便本地运行测试环境[^4]。 #### 示例项目概述 为了便于理解如何实际运用这些功能,在 `src/main/java/com/langchain4j/examples` 文件夹下包含了若干个精心挑选出来的案例研究[^1]。每一个例子都针对特定场景进行了优化,比如对话管理、文本摘要生成等任务;通过阅读相应的 README.md 文件可以获得每种应用场景的具体实现细节及其背后的技术原理解释[^3]。 #### 快速上手指导 除了上述提到的内容外,《LangChain4j 入门教程》还提供了一份详尽的新手引导材料——《LangChain4j 入门教程》,其中不仅涵盖了基础概念介绍,还包括了一系列动手实践环节,使得即使是初次接触此类技术栈的朋友也能迅速掌握核心技能点。 ```java // 这里展示了一个简单的 LangChain4j API 调用实例 import com.langchain4j.llm.openai.OpenAILanguageModel; public class QuickStartExample { public static void main(String[] args){ OpenAILanguageModel model = new OpenAILanguageModel("your-api-key"); String response = model.generateText("Tell me a joke about programmers."); System.out.println(response); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值