深度剖析JUC中LongAdder类源码

1.诞生背景

LongAdder是JDK8新增的一个原子操作类,和AtomicLong扮演者同样的角色,由于采用AtomicLong 保证多线程数据同步,高并发场景下会导致大量线程同时竞争更新一个原子变量,容易造成大量线程竞争失败后,无线循环不断自旋尝试CAS,极大浪费CPU资源为了解决这个循环自旋尝试CAS极大占用CPU资源的问题,JDK大佬就创造了LongAdder类

2.LongAdder核心思想

将一个变量拆分成多个变量,高并发场景下让多个线程竞争获取多个资源,用以减少竞争资源冲突,从而提升性能。

本质就是一种分段锁思想,将一个变量分成多段,多线程并发下获取不同分段对象cell不会发生竞争,有效避免大量线程自旋竞争CAS

3.底层实现:

下面结合LongAdder的结构,add()sum() 方法对类底层执行进行剖析。
LongAdder是继承于Striped64。其中比较重要的四个参数在下图列出。

// 继承Striped64.
public class LongAdder extends Striped64 implements Serializable {
    private static final long serialVersionUID = 7249069246863182397L;
}
// Striped64 类中四个实例变量
    /** Number of CPUS, to place bound on table size */
    // 当前机器CPU数目
    static final int NCPU = Runtime.getRuntime().availableProcessors();

    /**
     * Table of cells. When non-null, size is a power of 2.
     */
     // 用于存储变量的数组,初始size为2,采用2倍扩容,因为length参与了线程获取cell对象时索引计算
    transient volatile Cell[] cells;

    /**
     * Base value, used mainly when there is no contention, but also as
     * a fallback during table initialization races. Updated via CAS.
     */
     // 变量基数
    transient volatile long base;

    /**
     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
     */
     // 用于判断是否发生cell竞争状态标识,1表示存在获取cell线程。
    transient volatile int cellsBusy;

cells数组是用来存储变量值的一部分的集合。Cell结构如下:以JDK21为例子

    /**
     * Padded variant of AtomicLong supporting only raw accesses plus CAS.
     *
     * JVM intrinsics note: It would be possible to use a release-only
     * form of CAS here, if it were provided.
     */
    @jdk.internal.vm.annotation.Contended static final class Cell {
        volatile long value;
        Cell(long x) { value = x; }
        final boolean cas(long cmp, long val) {
            return VALUE.weakCompareAndSetRelease(this, cmp, val);
        }
        final void reset() {
            VALUE.setVolatile(this, 0L);
        }
        final void reset(long identity) {
            VALUE.setVolatile(this, identity);
        }
        final long getAndSet(long val) {
            return (long)VALUE.getAndSet(this, val);
        }

        // VarHandle mechanics
        private static final VarHandle VALUE;
        static {
            try {
                MethodHandles.Lookup l = MethodHandles.lookup();
                VALUE = l.findVarHandle(Cell.class, "value", long.class);
            } catch (ReflectiveOperationException e) {
                throw new ExceptionInInitializerError(e);
            }
        }
    }

@jdk.internal.vm.annotation.Contended 注解是用以字节填充,用来避免伪共享。这个伪共享在上一篇剖析AQS源码中有讲。点击查看

这个Cell结构很简单,就是使用value变量来存储值。

接着看看sum() 方法:

    /**
     * Returns the current sum.  The returned value is <em>NOT</em> an
     * atomic snapshot; invocation in the absence of concurrent
     * updates returns an accurate result, but concurrent updates that
     * occur while the sum is being calculated might not be
     * incorporated.
     *
     * @return the sum
     */
    public long sum() {
        Cell[] cs = cells;
        long sum = base;
        if (cs != null) {
            for (Cell c : cs)
                if (c != null)
                    sum += c.value;
        }
        return sum;
    }

代码逻辑很简单,就是把base的值和cells数组里的值求和,这个就是LongAdder实际值

继续看add() 方法,这个是整个类最关键的方法:

    /**
     * Adds the given value.
     *
     * @param x the value to add
     */
    public void add(long x) {
		// b为基础值, v为存储当前线程被分配到具体某个cell的value。
		/** 
		m 当前cell的长度-1 ,
		由于cell的长度是2的幂数,因此结构必然是`...1111`结尾,
		index & m 就是用来计算当前线程竞争获取对象cell在cells的位置
		!(uncontended = c.cas(v = c.value, v + x) 
		cell对象cas失败走longAccumulate(x, null, uncontended, index)逻辑。
        **/
        Cell[] cs; long b, v; int m; Cell c;
        if ((cs = cells) != null || !casBase(b = base, b + x)) {
            int index = getProbe();
            boolean uncontended = true;
            if (cs == null || (m = cs.length - 1) < 0 ||
                (c = cs[index & m]) == null ||
                !(uncontended = c.cas(v = c.value, v + x)))
                longAccumulate(x, null, uncontended, index);
        }
    }
    /**
     * Returns the probe value for the current thread.
     * Duplicated from ThreadLocalRandom because of packaging restrictions.
     */
    static final int getProbe() {
        return (int) THREAD_PROBE.get(Thread.currentThread());
    }

1.介绍add方法前,先对getProbe()方法进行简要说明,这个可以理解为根据当前线程获取一个唯一id用来计算当前线程参与竞争Cell对象cells数组中索引位置
2.假定一个线程就是一个用户,cells中是一个窗口服务列表,cells中的每个cell实例是一个窗口,相关运行流程图如下:

在这里插入图片描述
3.接着来分析下longAccumulate 这个方法:

final void longAccumulate(long x, LongBinaryOperator fn,
                              boolean wasUncontended, int index) {
        if (index == 0) {
            ThreadLocalRandom.current(); // force initialization
            index = getProbe();
            wasUncontended = true;
        }
        // 默认冲突为false
        for (boolean collide = false;;) {       // True if last slot nonempty
            Cell[] cs; Cell c; int n; long v;
            if ((cs = cells) != null && (n = cs.length) > 0) {
            	// 当前cell对象为空
                if ((c = cs[(n - 1) & index]) == null) {
                	// cellsBusy 为0 此时可以通过自旋竞争获取锁。
                    if (cellsBusy == 0) {       // Try to attach new Cell
                        Cell r = new Cell(x);   // Optimistically create
                        // cas方式加锁。这个锁在创建对象和扩容时需要加锁。
                        if (cellsBusy == 0 && casCellsBusy()) {
                            try {               // Recheck under lock
                                Cell[] rs; int m, j;
                                // 二次检查。确保对象索引位置为null在执行赋值操作。
                                // 这个和懒加载单例模式DoubleCheck 思想一直。
                                if ((rs = cells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & index] == null) {
                                    //  将新建的cell对象r赋值给指定位置。
                                    rs[j] = r;
                                    break;
                                }
                            } finally {
                            	 // 锁释放
                                cellsBusy = 0;
                            }
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                // cas执行失败 设置true重新再执行
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                // 当前cell 存在 则执行CAS,如果方法fn为null则执行加法操作此时就是LongAdder
                // 如果传了函数,则调用自定义函数fn。
                else if (c.cas(v = c.value,
                               (fn == null) ? v + x : fn.applyAsLong(v, x)))
                    break;
                //  如果当前Cell数组元素个数大于CPU数或者已经完成扩容,则冲突为false。
                else if (n >= NCPU || cells != cs)
                    collide = false;            // At max size or stale
                // 如果以上判断均不满足,则是存在冲突的。设置为true。
                else if (!collide)
                    collide = true;
                // 如果当前n没有到达cpu个数且存在冲突。
                // 尝试扩容。cas机制扩容加锁,避免多个线程都进行扩容操作。
                else if (cellsBusy == 0 && casCellsBusy()) {
                    try {
                        if (cells == cs)        // Expand table unless stale
                            cells = Arrays.copyOf(cs, n << 1); // 必须是2倍扩容
                    } finally {
                    	// 锁释放
                        cellsBusy = 0;
                    }
                    // 重新设置冲突为false。
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                index = advanceProbe(index);
            }
            // cell数组初始化判断逻辑。
            else if (cellsBusy == 0 && cells == cs && casCellsBusy()) {
                try {                           // Initialize table
                    if (cells == cs) {
                        Cell[] rs = new Cell[2];
                        rs[index & 1] = new Cell(x);
                        cells = rs;
                        break;
                    }
                } finally {
                    cellsBusy = 0;
                }
            }
            // Fall back on using base
            else if (casBase(v = base,
                             (fn == null) ? v + x : fn.applyAsLong(v, x)))
                break;
        }
    }

index ==0 说明 getProbe() 方法为0,(int)
THREAD_PROBE.get(Thread.currentThread())=0,
则说明当前线程threadLocalRandomProbe=0, 这个是通过反射实现值获取。

在这里插入图片描述
再看Thread类中,关于threadLocalRandomProbe注释,说明ThreadLocalRandom 对象没有初始化,因此才需执行初始化操作。也就是ThreadLocalRandom.current()这个方法。

    /** Probe hash value; nonzero if threadLocalRandomSeed initialized */
    // 初始化后不能为0。
    int threadLocalRandomProbe;

由于longAccumulate 代码量太大,关于运行情况,注释都写在代码上。 相信大家都能看懂。

4.额外补充

1.LongAdder 和LongAccumulate 之间的关系,longAccumulate 是通用累计计算器,不仅可以实现累加,还可以根据用户自定义函数来实现累计功能,LongAdder 是其中一个特例,相当于就是一个longAccumulate 默认实现。
2.Cell数组的个数和CPU相等,此时性能能得到最大发挥。
3.Cell数组占用内存相对较大,一开始是null,只有在使用到Cell数组才会创建,惰性加载/懒加载方式。
4。应用场景:适用于高并发累计统计计数场景,不适用于单线程、以及多线程下实时获取精准数据的情况。
核心思想分段锁,采用空间换时间的策略,来提升高并发下统计计数的效率。大多数性能优化,都是空间换时间、时间换空间这两者之间做权衡

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值