十、100行代码实现简易通用智能 LLM AGENT

一、导读

        本文将分享如何使用不到 100 行的 Python 代码,实现一个具备通用智能潜力的简易 LLM Agent。你将看到整个实现过程——从核心原理、提示(Prompt)调优、工具接口设计到主循环交互,并获得完整复现代码的详细讲解。

二、引言:LLM Agent 的新思路

        在人工智能领域,大型语言模型(LLM)如 GPT 系列,凭借其强大的文本生成能力,已在多种应用中展现出卓越的表现。然而,传统的 LLM 主要擅长生成文本,缺乏与外部环境交互的能力,无法执行如计算、网络抓取或文件解析等具体任务。为突破这一局限,LLM Agent 的概念应运而生:通过将 LLM 与外部工具相结合,使模型不仅能进行对话,还能通过函数调用实现更复杂的任务。

        本文将分享如何使用不到 100 行的 Python 代码,实现一个具备通用智能潜力的简易 LLM Agent。你将看到整个实现过程——从核心原理、提示(Prompt)调优、工具接口设计到主循环交互,并获得完整复现代码的详细讲解。希望本文能启发你开发出更多满足实际需求的 Agent。

        在构建 LLM Agent 时,提示工程(Prompt Engineering)是关键环节。通过精心设计的提示,可以引导模型生成更准确和有用的输出。

        通过本文的实践,你将掌握如何在有限的代码量内,构建一个功能丰富的 LLM Agent,为人工智能应用的开发提供新的思路和方法。

三、核心原理详解

        在动手实现之前,我们需要理解几个关键概念和 Agent 的整体运行逻辑。掌握这些核心机制,将帮助你深入理解 LLM Agent 背后的设计哲学,并在实际开发中更加灵活地构建自己的智能助手。

3.1 大语言模型(LLM)的能力与局限

        LLM,如 GPT-4、Qwen 等,基于海量的文本数据训练,通过预测下一个词语的概率来生成自然且流畅的内容,表现出惊人的语言理解与生成能力。然而,LLM 本质上是一个语言预测器,这种机制天然存在以下局限:

计算与逻辑推理不足

        尽管模型能识别并生成数学表达式,但当涉及较复杂的运算(如大数乘法、日期推算、数值精确计算)时,经常出现错误,缺乏精准推理能力。

知识时效性有限

        LLM 的知识库通常在训练数据截止日期后无法自动更新。例如 GPT-4 的知识截止于2021年9月,因而无法回答实时性问题或获取最新资讯。

无法直接访问外部资源

        LLM 本身不具备直接执行代码、查询数据库、抓取网页或处理文件的能力,仅凭纯文本预测无法完成需要外部环境协作的任务。

为弥补这些局限,我们可以引入“函数调用(Function Call)”机制,让模型通过调用外部工具来增强自身能力,间接赋予模型类似“动手”的执行能力。

3.2 Function Call:赋能 LLM 的关键机制

Function Call(函数调用)是当前提升 LLM 实用性最重要的手段之一。这种机制允许模型在生成文本之外,同时以结构化的数据形式发出明确的指令,调用预定义的外部函数或工具。

Function Call 的运行机制可拆解为以下几个步骤:

需求识别

当 LLM 在交互中意识到当前任务超出自身能力范围时,便主动触发外部函数调用请求。例如,面对一道数学难题或网页查询任务,模型会自行判断需要外援介入。

调用参数生成

模型以结构化的数据格式(通常采用 JSON),明确指定调用函数的名称和所需的具体参数。例如,模型可能输出类似:

{   
    "function_name": "calculate_date_diff",
    "parameters":  {     
        "start_date": "2024-02-12",
        "end_date": "2025-03-15"   
    }
}

外部执行

系统接收到模型提供的函数调用请求后,执行预定义的外部工具或函数(例如进行 Python 代码执行、调用网络接口、访问数据库等),并获取实际执行结果。

结果反馈

执行结果再回传给模型,模型将结合上下文生成用户期望的自然语言答案。这种双向互动,使 LLM 的能力从纯文本输出扩展至实际任务执行。

Function Call 机制不但突破了模型自身的限制,还让模型产生一种类似“自我决策”的能力,实现了真正意义上的“动手”和“自我纠错”机制,大幅提升了实用性和应用价值

3.3 Agent 的完整运行机制

理解了 LLM 与函数调用机制后,我们可以更好地理解一个完整 LLM Agent 的工作流程。这一流程一般包含五个关键环节

(1)任务感知

Agent 首先接收并理解用户的输入请求,明确用户的真实意图。此时良好的 Prompt 工程会提高模型识别准确性。

(2)任务拆解与规划

对于复杂任务,Agent 会自动进行任务分解,把大任务拆分为数个易执行的小步骤。例如,“查询最近天气”这一任务可被拆分为“获取当前位置 → 查询天气API → 整理结果 → 回复用户”这几个子任务。

(3)决策并调用工具

Agent 基于任务规划结果,生成具体的函数调用请求,决定何时调用何种外部工具,以及具体调用参数。此环节考验 Prompt 设计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耿雨飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值