【pytorch】随着epoch增加,显存逐渐增加?解决pytorch显存释放问题

在训练深度学习模型时,遇到outofmemory错误,可以捕获异常并使用torch.cuda.empty_cache()清理缓存。而在测试阶段,应使用torch.no_grad()上下文管理器以减少内存占用和提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练时

在训练时,检测 “out of memory” 的error并通过torch.cuda.empty_cache()处理
如:

      try:
          outputs = net(inputs)
      except RuntimeError as exception:
          if "out of memory" in str(exception):
              print('WARNING: out of memory, will pass this')     
              torch.cuda.empty_cache()
              continue
          else:
              raise exception

测试时

在测试时,避免忘记设置 torch.no_grad()
如:

with torch.no_grad():
    inputs = None
    outputs = model(inputs)

参考文献

Pytroch - 显存释放问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁星知微

能帮助到你是我最大的荣幸

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值