论文地址:https://arxiv.org/pdf/2408.06636
开源代码地址:https://github.com/lxj-drifter/UIOU_files
目标检测是计算机视觉领域的重要组成部分,其效果直接由预测框的回归精度决定。作为模型训练的关键,IoU(交并比)很好地展示了当前预测框与真实框(Ground Truth)之间的差异。后续的研究者不断为 IoU 增加更多的考量因素,如中心距离、长宽比等。然而,仅仅细化几何差异是有上限的;此外,这些新的考量指标与 IoU 本身可能存在潜在的关联,简单地加减这些指标可能会导致“过度考虑”的问题。基于此,我们提出了一种新的 IoU 损失函数,称为 Unified-IoU (UIoU),它更加关注不同质量预测框之间的权重分配。具体来说,该损失函数通过一种新颖的方式动态调整模型的关注点,从低质量预测框转向高质量预测框,