yarn概念

yarn

1、概念

yarn是一个资源调度平台,负责为运算程序提供服务器计算资源,相当于一个分布式操作系统,MR就是运行在其上的

2、组件

1)RM

1>处理来自客户端的请求
2>监控NM
3>启动或监控AM
4>资源分配与调度

2)NM

1>管理单节点上的资源
2>处理来自RM的命令
3>处理来自AM的启停命令

4>容器的生命周期管理

5>向RM汇报作业资源、每个容器的运行状态

3)AM

1>与RM协商获取资源

2>把资源再分配给具体任务

3>去NM上启动、运行、监控任务

4>定期向RM发送心跳,汇报任务运行情况

5>任务结束,注销容器

4)Container

是yarn中资源抽象,它封装了某个节点上的多维度资源,内存、cpu等

3、运行机制

1、client向RM提交MR作业
2、RM收到请求后添加到调度器中,分配一个container给任务
3、NM接收到任务后创建container,启动AM,
4、AM下载client提交的资源到本地,向RM申请Maptask资源,RM分配相应的资源给AM
5、AM对申请的资源进行再分配,联系对应的NM,启动container运行maptask程序
6、Maptask程序运行完成后,AM再向RM申请运行ReduceTask资源
7、reducetask向maptask获取相应分区的数据运行
8、程序运行完后,AM向RM注销

4、调度器

yarn.resourcemanager.scheduler.class

1、FiFO 先进先出调度器

1)概念
单队列,根据提交的作业先后顺序
2)优点
简单易懂
3)缺点
不支持多队列,所以一般不单独用

2、Capacity Scheduler容量调度器

1)概念
apache hadoop 3.1.3默认调度器
1、多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
2、容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
3、灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,
	而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
4、多租户:支持多用户共享集群和多应用程序同时运行。
	为了防止同一个用户的作业独占队列中的资源,
	该调度器会对同一用户提交的作业所占资源量进行限定。
2)分配算法
1、队列资源分配,从root开始,使用深度优先算法,优先选择资源占用率最低的队列分配资源。
2、作业资源分配,默认按照提交作业的优先级和提交时间,顺序分配资源。
3、容器资源分配,按照容器的优先级分配资源;
如果优先级相同,按照数据本地性原则: 
	1)任务和数据在同一节点
	2)任务和数据在同一机架
	3)任务和数据不在同一节点也不在同一机架

3、Fair Scheduler 公平调度器

1)概念
CDH默认
1、多队列:支持多队列多作业
2、容量保证:管理员可为每个队列设置资源最低保证和资源使用上线
3、灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,
	而一旦该队列有新的应用程序提交,	
	则其他队列借调的资源会归还给该队列。
4、多租户:支持多用户共享集群和多应用程序同时运行;
	为了防止同一个用户的作业独占队列中的资源,
	该调度器会对同一用户提交的作业所占资源量进行限定。
2)分配策略
1、队列资源分配,优先选择对资源的缺额比例大的,在时间尺度上,
	所有作业获得公平的资源。某一时刻一个作业应获资源和实际获取资源的差距叫“缺额”
	调度器会优先为缺额大的作业分配资源
2、每个队列可以单独设置资源分配方式:FIFO、FAIR、DRF

5、常用命令

1)查看状态

 yarn node -list -all	列出所有节点
 yarn queue -status <QueueName>	查看队列状态
 yarn application -list	列出所有 Application
 yarn application -list -appStates  查看状态
 	ALL、NEW、NEW_SAVING、SUBMITTED、
 	ACCEPTED、RUNNING、FINISHED、FAILED、KILLED
 yarn application -kill application_***** 	Kill 掉 Application
 yarn container -list	 AppID 查看app对应的container
 yarn container -status  ContainerId
 yarn applicationattempt -list <ApplicationId> 	列出所有 Application 尝试的列表
 yarn applicationattempt -status <ApplicationAttemptId>	打印 ApplicationAttemp 状态
2)查看日志
yarn logs -applicationId application_***** 		查看某个app的日志
yarn logs -applicationId application_*****  -containerId container_**   查看container日志
3)更新配置
yarn rmadmin -refreshQueues	加载队列配置

6、参数

1)ResourceManager相关
yarn.resourcemanager.scheduler.class 配置调度器,默认容量
yarn.resourcemanager.scheduler.client.thread-count ResourceManager处理调度器请求的线程数量,默认50
2)NodeManager相关
yarn.nodemanager.resource.detect-hardware-capabilities 是否让yarn自己检测硬件进行配置,默认false
yarn.nodemanager.resource.count-logical-processors-as-cores 是否将虚拟核数当作CPU核数,默认false
yarn.nodemanager.resource.pcores-vcores-multiplier 虚拟核数和物理核数乘数,例如:4核8线程,该参数就应设为2,默认1.0
yarn.nodemanager.pmem-check-enabled 是否开启物理内存检查限制container,默认打开
yarn.nodemanager.vmem-check-enabled 是否开启虚拟内存检查限制container,默认打开
yarn.nodemanager.vmem-pmem-ratio 虚拟内存物理内存比例,默认2.1
3)Container相关
yarn.scheduler.minimum-allocation-mb 容器最最小内存,默认1G
yarn.scheduler.maximum-allocation-mb 容器最最大内存,默认8G
yarn.scheduler.minimum-allocation-vcores 容器最小CPU核数,默认1个
yarn.scheduler.maximum-allocation-vcores 容器最大CPU核数,默认4个
### Spark on YARN 工作原理及核心概念 #### 1. Spark on YARN 的工作原理 Spark on YARN 是一种将 Spark 应用程序运行在 Hadoop YARN 集群上的模式。在这种模式下,YARN 负责资源管理和调度,而 Spark 则专注于计算任务的执行。其主要流程可以概括为以下几个阶段: - **应用程序提交**:用户通过 `spark-submit` 命令提交 Spark 应用程序到 YARN 集群中[^4]。 - **ResourceManager 交互**:Driver 程序(本地启动或集群内启动)与 YARN 的 ResourceManager 进行通信,申请资源以启动 ApplicationMaster (AM)。 - **ApplicationMaster 启动**:ResourceManager 分配一个 Container 给 AM,并在对应的 NodeManager 上启动 AM。此时,AM 只负责向 ResourceManager 申请资源[^3]。 - **Executor 分配**:AM 向 ResourceManager 请求更多的 Containers 来启动 Executor 实例。这些 Executors 执行具体的计算任务。 - **反向注册**:当 Executors 成功启动后,它们会反向注册到 Driver 程序,从而完成整个任务的初始化过程[^3]。 - **任务执行**:Driver 程序开始执行主函数(main function),并分配任务给各个 Executor 执行。 #### 2. 核心概念 - **RDD(Resilient Distributed Dataset)**:这是 Spark 的核心抽象,表示弹性分布式数据集。RDD 支持高效的容错机制和分布式计算能力,是 Spark Core 的基础[^1]。 - **ApplicationMaster (AM)**:在 Spark on YARN 模式下,AM 是负责与 YARN 协调资源的核心组件。它向 ResourceManager 申请资源,并管理所有 Executor 的生命周期[^3]。 - **Container**:YARN 中的资源单位,表示一个隔离的运行环境,包含一定的 CPU 和内存资源。每个 Executor 或 AM 都运行在一个或多个 Containers 中。 - **Driver Program**:驱动程序,负责解析用户的逻辑代码,生成执行计划,并协调整个 Spark 应用程序的运行。在 Cluster 模式下,Driver 运行在 YARN 集群内部;而在 Client 模式下,Driver 在本地运行[^2]。 - **Executor**:运行在 YARN 的 NodeManager 上,负责执行具体的任务(Task)。每个 Executor 包含一定数量的核心(Cores)和内存资源,用于处理分配的任务[^3]。 #### 3. Spark on YARN 的两种部署模式 - **Client Mode**:Driver 程序运行在客户端机器上,适合调试和开发环境。这种模式下,Driver 和客户端直接交互,便于日志查看和调试[^2]。 - **Cluster Mode**:Driver 程序运行在 YARN 集群内部,适合生产环境。这种模式下,Driver 和 AM 共同运行在集群中,提高了系统的可用性和可靠性[^2]。 #### 4. 内存管理与参数调优 Spark on YARN 的内存管理涉及多个层面,包括 YARN 层面的资源配置、Spark 层面的内存分配策略等。以下是一些关键参数: - `--executor-memory`:指定每个 Executor 的内存大小。 - `--executor-cores`:指定每个 Executor 使用的核心数。 - `--num-executors`:指定启动的 Executor 数量。 - `spark.yarn.executor.memoryOverhead`:指定每个 Executor 的额外开销内存。 通过合理配置这些参数,可以优化 Spark 应用程序的性能,减少资源浪费。 ```python # 示例:使用 spark-submit 提交 Spark on YARN 作业 spark-submit \ --class com.example.MyApp \ --master yarn \ --deploy-mode cluster \ --executor-memory 4g \ --executor-cores 2 \ myapp.jar ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值