《leetcode198.打家劫舍》解题思路

该博客探讨了LeetCode上的《房子窃贼》问题,通过动态规划的方法找到盗窃一系列房屋所能获得的最大金额。博主首先从基础情况分析,逐步递增房屋数量,提炼出状态转移方程:dp[i]=max(dp[i-1],dp[i-2]+nums[i])。最后给出了Java代码实现,通过比较相邻房屋之间的策略来确定最佳盗窃路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接: https://leetcode-cn.com/problems/house-robber/
思考过程:
思路一:

  1. 假如只有1个房屋,那么不用考虑,直接偷这一个就行。
  2. 假如有2个房屋,那么直接比较,偷取这两个房屋中最大的即可。
  3. 假如有3个房屋,金额表示如下所示:
    【1,2,3】
    此时就得偷第1号房屋和3号房屋,才能获得最高金额:4。
    或者还有一种情况,房屋金额表示如下:
    【1,5,3】
    如果2号房屋大比1号和3号房屋加起来的金额都大,则直接偷取2号房屋的金额:5。
    因此,对于三间房屋,当1号和3号房屋的金额大于2号房屋,则选择偷1号和3号房屋;反之,则偷2号房屋的金额。
  4. 假如有4个房屋,金额表示如下:

    则先对1号和2号房屋进行比较,取出其最大金额的房屋,如上图所示,1号房屋金额最大。
    对于前3个房屋,显然得出最大金额是3。
    然后再对前两个的最大金额加4号房屋的金额(2 + 4)与前3个房屋的最大金额(3)进行比较,计算出最大金额。

总结 对于3个以上的房屋问题,都可拆分成: 前n - 2个房屋的最大金额数+第n个房屋的金额 与 前n - 1个房屋的最大金额的比较。

题解
本题其实考察的是动态规划,动态规划使用于子问题重叠的情况。
状态转移方程如下:

dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])

代码如下:

class Solution {
    public int rob(int[] nums) {
		if(nums==null || nums.length == 0) {
            return 0;
        }
        if(nums.length == 1) {
            return nums[0];
        }
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0],nums[1]);
        for(int i = 2; i < nums.length; i++) {
            dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i]);
        }
        return dp[nums.length-1];
    }
        
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值