利用MATLAB做一维CNN分类 问题及解决方法

本文总结了在MATLAB中使用一维卷积神经网络(CNN)进行分类时遇到的数据维度转换和训练准确率保持在50%左右的问题,并提供了相应的解决方案,包括数据维度调整和增加网络层数及训练轮数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用MATLAB做一维数据的CNN分类 问题及解决方法

我在做一维CNN分类时参考了知乎凉拌西红柿答主的程序示例,根据其代码改编实现了CNN分类。

其中遇到的问题与解决方法总结如下:

1. 数据维度转换问题

for i = 1 : 1 : 3000
 for j = 1 : 1 : 72
   Xtrain(1, j, 1, i)=data(i, j); % 输入数据维度转化
 end
end

程序说明:
 (1)需要进行分类的数据data是3000*72维的,则可通过下面的代码转换成Xtrain作为CNN的输入。
 (2)可以理解为,“3000”对应数据量(条),“72”对应样本点数。
 (3)对于有时间序列,如信号,也可以根据上述方式转换维度,不会影响数据的时间关联性。
 (4)Xtrain的4D维度是为了适应图像输入格式。4个参数分别代表图像的(长,宽,通道数,样本量)。

2.训练准确率一直在50%左右

 可能存在的问题:
  (1)网络结构不合理——>增加卷积层数。
   答主给出的程序里CNN只有2个卷积层,层数太少,可能不适用于某些数据。我参考了VGG16的网络结构(有13个卷积层),增加卷积层数后,训练准确率有所上升。

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值