【制造业】-数据资源中心关键术语
- 一、数据治理和数据资产常见术语
- 二、DaaS数据应用层
-
- 2.1ODS(Operational Data Store)企业运营数据仓库
- 2.2EDW(Enterprise Data Warehouse)企业级数据仓库
- 2.3DM(Data MART)数据集市
- 2.4ETL(Extract-Transform-Load)数据仓库技术
- 2.5ESB(Enterprise Service Bus)企业服务总线
- 2.6SOA(Service-Oriented Architecture)面向服务的体系结构
- 2.7PaaS(Platform as a Service)平台即服务
- 2.8RTDB(Real Time Database)实时数据库
- 2.9BI(Business Intelligence)商业智能
- 2.10VDC(Virtual Device Content)虚拟数据中心
- 三、IT层
- 四、OT控制层(5个)
- 五、物联网层(LOT层)(3个)
- 六、基础架构层(12个)
-
- 6.1 APM(Application Performance Management)应用性能管理
- 6.2 ISCSI(Internet Small Computer System Interface)小型计算机系统接口
- 6.3 LAN(Local Area Network)局域网
- 6.4 IaaS(Infrastructure as a Service)基础设施即服务
- 6.5 NAS(Network Attached Storage)网络附属存储
- 6.6 SAN(Storage Area Network)存储区域网络
- 6.7 TCP(Transmission Control Protocol)传输控制协议
- 6.8 VPN(Virtual Private Network)虚拟专用网络
- 6.9 ITIL(Information Technology Infrastructure Library)信息技术基础架构库
- 6.10 ITSM(IT Service Management IT)IT服务管理
- 6.11 GSBL(Global Server Load Balance)全局负载均衡
- 6.12 DNS(Domain Name System)域名解析系统
前言:制造业企业全业域数据资源中心的数据包含从客户需求、销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货交付、售后服务、运维、报废回收、再制造等整个产品全生命周期生产数据。全业务数据中心是产业互联网的数据源头,全业务数据中心将从应用层、IT系统层、控制层、IOT层及基础架构层推进产业互联网的数据进化。
制造业企业全业务域数据资源中心涉及跨专业领域术语很多,笔者根据网上资料对企业全业务数据中心的常见关键术语进行整理,便于读者更好的理解和开展数据资源中心相关建设工作。
一、数据治理和数据资产常见术语
1.1数据(Data)
数据(Data)是载荷或记录信息的按一定规则排列组合的物理符号。可以是数字、文字、图像、声音,也可以是计算机代码等等。是使用约定俗成的关键字,对客观事物的数量、属性、位置及其相互关系进行抽象表示,以适合在这个领域中用人工或自然的方式进行保存、传递和处理。
1.2信息(Knowledg)
是具有时效性的,有一定含义的,有逻辑的、经过加工处理的、对决策有价值的数据流。数据的意义在于能够传递信息,对信息的接收始于对数据的接收,对信息的获取只能通过对数据背景的解读。数据背景是接收者针对特定数据的信息准备,即当接收者了解物理符号序列的规律,并知道每个符号和符号组合的指向性目标或含义时,便可以获得一组数据所载荷的信息。亦即数据转化为信息,可以用公式“数据+背景=信息”表示。
1.3数据管理(DM,Data Management)
是指通过规划、控制与提供数据和信息资产职能,以获取、控制、保护、交付和提高数据和信息资产价值。
1.4数据治理(DG,Data Governance)
对数据资产管理活动行使权力和控制的活动集合(规划、监控和执行)。数据治理职能指导其他数据管理职能如何执行组织为实现数据资产价值最大化所开展的一系列持续工作过程,明确数据相关方的责权、协调数据相关方达成数据利益一致、促进数据相关方采取联合数据行动。
1.5数据资产(Data Asset)
是指由企业拥有或者控制的,能够为企业带来未来经济利益的,以物理或电子的方式记录的数据资源,如文件资料、电子数据等。在企业中,并非所有的数据都构成数据资产,数据资产是能够为企业产生价值的数据资源。
1.6数据资产管理(DAM,Data Asset Management)
是指规划、控制和提供数据及信息资产的一组业务职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据资产的价值。数据资产管理是需要充分融合业务、技术和管理,来确保数据资产保值增值。
1.7元数据(MetaData)
就是“描述数据的数据”或“关于数据的结构化数据”。元数据按用途不同分为技术元数据、业务元数据和管理元数据。哈佛大学数字图书馆项目定义: 元数据是帮助查找、存取、使用和管理信息资源的信息。是关于数据仓库的数据,指在数据仓库建设过程中所产生的有关数据源定义,目标定义,转换规则等相关的关键数据。描述数据的内容(what)、覆盖范围(where, when)、质量、管理方式、数据的所有者(who)、数据的提供方式(how)等信息,是数据与数据用户之间的桥梁。
1.8主数据(Master Data)
指满足跨部门业务协同需要的、反映核心业务实体状态属性的组织机构的基础信息。主数据相对交易数据而言,属性相对稳定,准确度要求更高,唯一识别。
1.9主数据管理(MDM,Master Data Management)
是一系列规则、应用和技术,用以协调和管理与企业的核心业务实体相关的系统记录数据。
1.10交易数据(Transaction Data)
事务数据、业务数据根据业务需要,围绕主数据实体产生的业务行为和结果型数据。相对于主数据,事务型数据从本质上均具有短期或瞬间的特点。
1.11指标数据(Analytical Data)
国标GB T 36073-2018《数据管理能力成熟度评估模型》定义如下:指标数据是组织在经营分析过程中衡量某一个目标或事物的数据,一般由指标名称、时间和数值等组成。另外有一种通俗的定义,也叫报表数据,企业中的报表,这些报表由各类事务型数据所组成。针对某个业务主题,汇集多维维度,多指标的数据,由各类业务数据所组成,如BI报告等,如销售排名分析、资产负债表、损益表、销售报表、库存报表等。指标数据管理指组织对内部经营分析所需要的指标数据进行统一规范化定义、采集和应用,用于 提升统计分析的数据质量。
1.12数据湖(Data Lake)
是Pentaho的CTO James Dixon提出来的(Pentaho作为一家BI公司在理念上是挺先进的),是一种数据存储理念——即在系统或存储库中以自然格式存储数据的方法。
二、DaaS数据应用层
DaaS是Data-as-a-service(数据即服务),是继IaaS、PaaS、SaaS之后又一个新的服务概念。服务是指为他人做事,并使他人从中受益的一种有偿或无偿的活动。不以实物形式而以提供活劳动的形式满足他人某种特殊需要。服务的提供可涉及:在顾客提供的有形产品(如维修的汽车)上所完成的活动、在顾客提供的无形产品(如为准备税款申报书所需的收益表)上所完成的活动、无形产品的交付(如知识传授方面的信息提供)、为顾客创造氛围(如在宾馆和饭店)。
2.1ODS(Operational Data Store)企业运营数据仓库
是数据仓库体系结构按照企业要求的数据格式对数据进行清洗,它是“面向主题的、集成的、当前或接近当前的、不断变化的”数据。
2.2EDW(Enterprise Data Warehouse)企业级数据仓库
为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。不同的行业的都有一个通用的数据模型,数据模型不像ODS有很大的冗余。
2.3DM(Data MART)数据集市
就是满足特定的部门或者用户的需求,按照多维的方式进行存储,包括定义维度、需要计算的指标、维度的层次等,生成面向决策分析需求的数据立方体。