深度学习网络——alexnet

深度学习网络——alexnet

论文链接:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
代码链接:https://pytorch.org/docs/stable/_modules/torchvision/models/alexnet.html

参考链接:
ImageNet Classification with Deep Convolutional Neural Networks 译
卷积神经网络之AlexNet
初探Alexnet网络结构


在这里插入图片描述


# -*- coding:UTF-8 -*-

import torch.nn as nn
import torch.utils.model_zoo as model_zoo


__all__ = ['AlexNet', 'alexnet']


model_urls = {
    'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}


class AlexNet(nn.Module):

    def __init__(self, num_classes=1000):
        # super 加载父类中的__init__()函数
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            # image_size: n * n
            # kernel_size: k * k
            # padding: p
            # stride: s
            # out_size = (n + 2 * p - k) / S + 1
            # 输入为 3x227x277 的图片
            # out = (227 + 2 * 2 - 11) / 4 + 1 = 56
            # 3x227x277 ==> 64x56x56
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            # out = (56 + 0 - 3) / 2 + 1 = 27
            # 64x56x56 ==> 64x27x27
            nn.MaxPool2d(kernel_size=3, stride=2),
            # out = (27 + 2 * 2 - 5) / s + 1 = 27
            # 64x27x27 ==> 192x27x27
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            # out = (27 + 0 - 3) / 2 + 1 = 13
            # 192x27x27 ==> 192x13x13
            nn.MaxPool2d(kernel_size=3, stride=2),
            # out = (13 + 2 * 1 - 3) / 1 + 1 = 13
            # 192x13x13 ==> 384x13x13
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            # out = (13 + 2 * 1 - 3) / 1 + 1 = 13
            # 384x13x13 ==> 256x13x13
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            # out = (13 + 2 * 1 - 3) / 1 + 1 = 13
            # 256x13x13 ==> 256x13x13
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            # out = (13 + 0 - 3) / 2 + 1 = 6
            # 256x13x13 ==> 256x6x6
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        # https://www.zhihu.com/question/282046628
        # 在实际的项目当中,我们往往预先只知道的是输入数据和输出数据的大小,而不知道核与步长的大小。
        # 如果使用上面的方法创建汇聚层,我们每次都需要手动计算核的大小和步长的值。
        # 而自适应(Adaptive)能让我们从这样的计算当中解脱出来,只要我们给定输入数据和输出数据的大小,自适应算法能够自动帮助我们计算核的大小和每次移动的步长。
        # 相当于我们对核说,我已经给你输入和输出的数据了,你自己适应去吧。
        # 你要长多大,你每次要走多远,都由你自己决定,总之最后你的输出符合我的要求就行了。
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        # 分类器
        self.classifier = nn.Sequential(
            # 失活层
            nn.Dropout(),
            # 线性层
            nn.Linear(256 * 6 * 6, 4096),
            # relu 激活层
            nn.ReLU(inplace=True),
            # 失活层
            nn.Dropout(),
            # 线性层
            nn.Linear(4096, 4096),
            # relu 激活层
            nn.ReLU(inplace=True),
            # 线性层
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        # 卷积特征提取层
        x = self.features(x)
        # 平均池化
        x = self.avgpool(x)
        # 展开成一维
        x = x.view(x.size(0), 256 * 6 * 6)
        # 分类器
        x = self.classifier(x)
        return x


def alexnet(pretrained=False, **kwargs):
    r"""AlexNet model architecture from the
    `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = AlexNet(**kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['alexnet']))
    return model


if __name__ == '__main__':
    net = alexnet()
    print(net)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值