C++ 算法篇 动态规划----背包之一 01背包

背包九讲专题

一、01背包

题目:有 N 件物品和一个容量为 V 的背包。第 i 件物品的费用是 w[i],价值是 p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。  

1、基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f [i] [v] = max { f [i-1] [v]  ,   f [ i-1] [ v-c[i]  ] + w[i]  }

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

          注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的最大值。 如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i-1][v],这样就可以保证f[N][V]就是最后的答案。但是若将所有f[i][j]的初始值都赋为0,你会发现f[n][v]也会是最后的答案。为什么呢?因为这样你默认了最开始f[i][j]是有意义的,只是价值为0,就看作是无物品放的背包价值都为0,所以对最终价值无影响,这样初始化后的状态表示就可以把“恰”字去掉。

2、应用举例

有3个物品,背包容量为10,如下:求背包最多能放下多大价值的物品。

输入:

10 3 
3 4
4 5
5 6

输出:

11

 二维解法:

#include<bits/stdc++.h>
using namespace std;
int f[50][220]={0},w[40],p[40];
int main()
{  int i,v,V,n;
   cin>>V>>n;
   for(i=1;i<=n;i++)
      cin>>w[i]>>p[i];
   for(i=1;i<=n;i++)
   { for(v=V;v>=1;v--)
       if(v<w[i]) f[i][v]=f[i-1][v];
	   else f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+p[i]);	    
   }  
   for(i=1;i<=n;i++)   
   {  for(v=1;v<=V;v++) 
	    cout<<setw(5)<<f[i][v]; 
	  cout<<endl;
   }    
}

 初始时:我们初始化f[]全部为0

  第1次主循环,即当i = 1时,我们只对物品1进行选择,对于内层循环,即当v = 10....3时,我们有:

  f[10] = max{f[10], f[10-3]+p[1]} = max{f[10], f[7]+4} = max{0, 0+4} = 4;

  f[9] = max{f[9], f[9-3]+p[1]} = max{f[9], f[6]+4} = max{0, 0+4} = 4;

  f[8] =max{f[8], f[8-3]+p[1]} = max{f[8], f[5]+4} = max{0, 0+4} = 4;

  f[7] = max{f[7], f[7-3]+p[1]} = max{f[7], f[4]+4} = max{0, 0+4} = 4;

  f[6] = max{f[6], f[6-3]+p[1]} = max{f[6], f[3]+4} = max{0, 0+4} = 4;

  f[5] = max{f[5], f[5-3]+p[1]} = max{f[5], f[2]+4} = max{0, 0+4} = 4;

  f[4] = max{f[4], f[4-3]+p[1]} = max{f[4], f[1]+4} = max{0, 0+4} &

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值