原文见:ReSTIR GI
数学基础
ReSTIR GI的数学基础是关键性重采样(Importance Resampling)。数学方面我也没有彻底搞懂,只是借用这篇论文的解释做一个直观的说明。
假设我们想用pdf g从抽样分布中生成样本,但不能直接这样做(例如有可能是g太复杂,也有可能是不连贯等原因),因为g没有解析封闭形式,或者太复杂而无法积分和反演。此时,我们可以从一个简单的源分布p中生成一组样本,数量为M,对这些样本进行适当的加权,然后按照加权的比例重新对这些样本进行抽样,就可以得到一个对不同于p的采样的近似。更进一步,如果我们将权值设为Wj=g(Xj)/p(Xj),那么重抽样的结果分布就会是一个对g抽样的近似。M越大,对g的近似就越准确。

算法描述
ReSTIR GI核心思路的精华都集中在下面这张图中:即发现了一个有效的采样点后,会在时域和空域对这个采样点进行分享。不论这个有效采样点的光路多复杂,只要将最后一个碰撞点与领域像素点连接即可让领域也获得一条有效光路。

本文介绍ReSTIR GI算法,其数学基础是关键性重采样,核心思路是时域和空域的RayTracing复用。算法分Initial Sample、Temporal Reservoir、Spatial Reservoir三步,还存在工程性细节。该算法有时域局限性,不适用于Glossy表面,且可能影响后续滤波操作。
最低0.47元/天 解锁文章
522






