ReSTIR GI关键点梳理

本文介绍ReSTIR GI算法,其数学基础是关键性重采样,核心思路是时域和空域的RayTracing复用。算法分Initial Sample、Temporal Reservoir、Spatial Reservoir三步,还存在工程性细节。该算法有时域局限性,不适用于Glossy表面,且可能影响后续滤波操作。

原文见:ReSTIR GI

数学基础

ReSTIR GI的数学基础是关键性重采样(Importance Resampling)。数学方面我也没有彻底搞懂,只是借用这篇论文的解释做一个直观的说明。

假设我们想用pdf g从抽样分布中生成样本,但不能直接这样做(例如有可能是g太复杂,也有可能是不连贯等原因),因为g没有解析封闭形式,或者太复杂而无法积分和反演。此时,我们可以从一个简单的源分布p中生成一组样本,数量为M,对这些样本进行适当的加权,然后按照加权的比例重新对这些样本进行抽样,就可以得到一个对不同于p的采样的近似。更进一步,如果我们将权值设为Wj=g(Xj)/p(Xj),那么重抽样的结果分布就会是一个对g抽样的近似。M越大,对g的近似就越准确。
在这里插入图片描述

算法描述

ReSTIR GI核心思路的精华都集中在下面这张图中:即发现了一个有效的采样点后,会在时域和空域对这个采样点进行分享。不论这个有效采样点的光路多复杂,只要将最后一个碰撞点与领域像素点连接即可让领域也获得一条有效光路。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值