自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(274)
  • 问答 (1)
  • 收藏
  • 关注

原创 从零搭建3D激光slam框架-基于mid360雷达节点实现

1 硬件介绍:livox-mid360是大疆的一款非重复扫描固态激光雷达,20万点/秒,可以调整帧率,内部自带6轴IMU,与点云实现硬件同步。售价3999,线缆399,线缆包括网线电源与串口线,网线与雷达通信负责传输雷达点云与IMU数据,电源12V2A,给雷达供电,串口用于与雷达通信,获取雷达工作状态。2 软件介绍:雷达软件分为上位机点云测试软件LivoxViewer_2.3.0_Win64,雷达LIVOX-SDK2()雷达驱动ROS2节点,点云测试软件可以查看点云形态,测试点云质量和通信稳定性。

2025-07-27 10:41:41 4

原创 cartographer 传感器数据走向

/ 将数据传入 callback() 函数进行处理,并将这个数据从数据队列中删除。// 遍历所有的数据队列, 找到所有数据队列的第一个数据中时间最老的一个数据。// 正常情况, 数据时间都超过common_start_time。可以对生产者类和消费者类进行独立的复用与扩展。复用:通过将生产者类和消费者类独立开来。将两个类之间的耦合度降到最低。生产者和消费者之间不直接依赖。构造的时候传入了一个函数。如果消费者吞吐数据很慢。生产者将数据丢到缓冲区。生产者直接调用消费者。两者是同步(阻塞)的。

2025-07-26 10:14:42 500

原创 pytorch常用函数

在模型训练的优化部分,调整最多的一个参数就是学习率,合理的学习率可以使优化器快速收敛。一般在训练初期给予较大的学习率,随着训练的进行,学习率逐渐减小。,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段。以余弦函数为周期,并在每个周期最大值时重新设置学习率。以余弦函数为周期,并在每个周期最大值时重新设置学习率。最小学习率,即在一个周期中,学习率最小会下降到。一个计算学习率调整倍数的函数,输入通常为。学习率衰减的最小值,当学习率变化小于。,每一个元素代表何时调整学习率,修饰符维护被维护函数的签名。

2025-07-24 20:43:40 661

原创 Cartographer_ros代码阅读

回环检测与后端位姿图优化都不会对前端的任何坐标产生作用。是表达被回环检测与位姿图优化所更改后的坐标系。单线点云与多回声波雷达点云都是先经过。这个坐标系与坐标系下的机器人的坐标。函数将点云点云从雷达坐标系下转到。一经扫描匹配之后就不会再被改变。成员函数指针的声明与初始化。通过对象来调用成员函数指针。是否将变换投影到平面上。但坐标系本身不会发生变化。这个坐标系下的节点坐标。一种是多回声波雷达点云。中存在两个地图坐标系。类的回调函数进来只有。

2025-07-23 21:04:31 664

原创 PyTorch常用工具

优化是指在每个训练步骤中调整模型参数以减少模型误差的过程。梯度计算,为了优化神经网络中参数的权值,我们需要计算损失函数对参数的导数,可以直接。但是,在某些情况下,我们并不需要这样做,例如,当我们训练了模型,只是想跑。于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征。因此,我们需要能够计算关于这些变量的损失函数的梯度。层能够用全部训练数据的均值和方差,即测试过程中要保证。的梯度,然后对参数进行更新,是最常见的优化方法。模型将学习到的参数存储在一个内部状态字典中,称为。

2025-07-22 20:44:23 670

原创 卷积神经网络

虚线残差块,仅在conv3_1, conv4_1,conv5_1中使用,在卷积神经网络中通常会在相邻的卷积层之间加入一个池化层,是一种很强的先验,使特征学习包含某种程度自由度,能容忍。在深层网络(50,101,152)中除了上面提到的。卷积过程中,不是逐像素,而是有个步长如右图所示。公式如下,如果得到的大小不是整数,则向下取整也就。隐藏层只能使用非线性激活函数,不能使用线性,小批的梯度下降,这种方法把数据分为若干个批,,所以计算的过程中如右图所示,卷积的时候是。个参数计算然后加和得到的结果是当前像素卷积。

2025-07-20 22:27:15 729

原创 Python入门

字典是一种映射类型,字典用 { } 标识,它是一个无序的 键(key) : 值(value) 的集合。:如果你需要一段运行很快的关键代码,或者是想要编写一些不愿开放的算法,你可以使用C或C++完成那。:一行语句换行使用\,在 [], {}, 或 () 中的多行语句,不需要使用反斜杠 \。:Python有相对较少的关键字,结构简单,和一个明确定义的语法,学习起来更加简单。将某个模块中的全部函数导入,格式为: from somemodule import *,来使选择元组的长度与数组的维度相同。

2025-07-19 22:08:12 447

原创 cartorgapher的编译与运行

命令是设置当前的终端 可以执行的包与节点的地址集合的。在雷达数据远距离的点不准时一定要减小这个值。的软件源设置成清华的或者其他的中国境内的源。在网盘链接里 数据集文件夹 中下载数据集。时就会出现 找不到包或找不到节点的。在某个文件夹内部空白处单击鼠标右键。一定要确保之前的依赖项全部安装成功。如果提示脚本不是一个可执行的文件。如果提示脚本不是一个可执行的文件。可以改成自己想要保存的文件夹地址。因为代码的注释是处于更新状态的。相当于减小了需要处理的点数。相当于减小了匹配时的搜索量。

2025-07-18 21:18:36 951

原创 Image 和 IMU 时间戳同步

时间戳同步问题及意义什么是时间戳同步为什么要时间戳同步2时间戳延迟估计方法基于轨迹匀速模型的时间戳补偿算法基于视觉特征匀速模型的时间戳补偿算法两匀速模型算法对比3时间戳同步算法扩展其他时间戳延迟估计算法VIO初始化阶段的时间戳估计时间戳同步初探时间戳用途:传感器数据被采集时刻t标注,用于数据对齐融合。VIO例子:如图1中上部分所示,1时刻相机姿态已知,其2时刻的姿态可以通过1到4之间的IMU数据进行预测。错误的时间戳将导致错误的姿态约束。

2025-07-16 21:07:46 976

原创 SLAM 前端

一个传统的双目光流前端流程(正常追踪流程)在实现中,尽管后端存在明显的理论差异,但很难直观体验在最。光流法最早,最成熟,缺点也明显(抗光照干扰弱,依赖角点)特征匹配和光流都非常依赖角点,日常生活场景中角点不明显的。除了正常追踪流程以外,还需要考虑初始化、丢失恢复的情况。利用角点附近块的两个特征值大小,可以判断该区是否为角点。如果相机停止,可能给后端留下无用的优化,甚至导致后端问题。因此,对于非关键帧,它的误差会逐渐累积。在光流中,我们通常选择角点来追踪。的关键帧窗口通常有一个很远的和两三个很近的,其他几。

2025-07-14 20:55:06 929

原创 自动驾驶发展环境

汽车引发能源、环境、安全和拥堵问题自动驾驶需政策支持与法规引导,应对社会秩序挑战能减少事故、提高道路通行率、降低能耗中国制定智能汽车目标,出台多部政策 全球多国支持自动驾驶发展。

2025-07-12 09:51:32 656

原创 自动驾驶线控系统与动力电池系统

无人车线控系统包括智能线控系统、电驱动系统和整车控制系统等部分。动力系统 动力系统主要是由动力电池及相关控制系统构成, 为整车的正常运行提供电能源。智能线控系统是一种将操纵意图或操纵指令通过电信号转换并传输到执行机构实现精准控制的系统。

2025-07-11 21:48:56 857

原创 自动驾驶控制系统

控制技术是智能驾驶的关键,旨在环境感知技术的基础之上,根据决策规划出目标轨迹,通过纵向和横向控制系统的配合使汽车能够按照跟踪目标轨迹准确稳定行驶,同时使汽车在行驶过程中能够实现车速调节、车距保持、换道、超车等基本操作。

2025-07-10 21:07:36 1396

原创 自动驾驶决策与规划

决策规划是自动驾驶的核心技术,确保车辆流畅、准确地执行各种驾驶行为。融合多传感信息,根据驾驶需求进行决策,避开障碍物,规划多条安全路径,并选择最优路径作为行驶轨迹。决策规划系统类比于人类大脑,负责处理和分析驾驶过程中的各种信息。决策规划系统需要从环境感知模块获取实时的环境感知信息,包括道路情况、车辆周围障碍物信息、交通信号信息等。根据驾驶需求和环境感知信息,决策规划系统需要进行任务决策,包括路径规划、速度规划、加速度规划等。

2025-07-09 21:04:48 812

原创 自动驾驶传感器的标定与数据融合

集中处理方式的缺点:实时处理传感器数据需要宽带通信,可能引起较高的电磁干扰,需要性能更好的中央ECU,并且增加了系统的电能需求和散热量。GNSS、惯导、视觉、激光雷达、轮速计、高精地图等都是传感器的一种,多种传感器可采集不同形式的数据,用于生成不同类型和不同权重的约束。多传感器融合定位技术,可以规避单一定位方法的缺陷,获得更准确的定位结果。摄像头和激光雷达的数据融合: 传统方法包括Bayes滤波、自适应引导图滤波、传统的形态学滤波等,而基于深度学习的传感器数据融合算法是目前较多采用的方法。

2025-07-08 21:02:39 1344

原创 自动驾驶感知系统

利用摄像头捕捉图像信息,如道路标志、交通信号、车辆、行人等,为自动驾驶系统提供决策依据。通过发射激光束并测量反射时间,计算周围物体的距离和位置,提供高精度信息和三维地图。利用毫米波电磁波检测短距离障碍物,测量位置和速度,对自动驾驶系统提供关键感知信息。利用超声波进行近距离感知,检测车辆周围近距离障碍物,如停车位上的车辆或行人,提供精确感知信息。利用卫星信号提供车辆位置和速度信息,具有全球覆盖、高精度、高速度等优点。但在建筑物内部或隧道等区域可能受到信号干扰或阻挡,导致定位不准确。

2025-07-08 20:50:02 762

原创 自动驾驶基本结构与组成

自动驾驶技术包括环境感知、决策规划和车辆控制三大部分。车联网系统定义车联网系统是指通过无线通信技术、计算机技术、网络传输和控制技术,对无人车实现实时的、自动化的、高度集中控制的无人车运行系统。2021年3月,国务院发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,提出了“积极稳妥发展车联网”、“在智能交通、智慧物流、智慧能源等重点领域开展试点示范”等任务目标,强化了车联网的战略地位。车联网市场范畴车联网系统硬件组成。

2025-07-07 20:18:36 748

原创 自动驾驶基本概念

环境感知与导航定位是自动驾驶的核心技术,这一层的主要功能和目的是利用激光、毫米波、超声波雷达、摄像头等车载传感器和通过车联网获取的多源数据,为车辆提供规划决策所需的必要条件。环境感知是无人驾驶的重要组成部分。通过传感器,采集周边和自身信息,实时发送给处理器,识别周边的车辆、障碍物、行人、可行使区域和交通规则等各种路况信息,确保自动驾驶汽车对环境的理解和把握。智能网联就是指车联网与单车智能的有机联合,在单车智能的技术上融合现代通信与网络技术,实现车与车、车与人、车与路、车与后台等之间的信息交互共享。

2025-07-06 09:04:08 1020

原创 C#程序入门

为了对类进行封装,类的字段通常被设计为私有的(private),那么为了能在类的外部有限地访问这些私有字段,C#引入了属性的概念,属性类似于字段,他们的区别:属性不存储数据,而字段存储数据。例如,在 for、while、方法或类似语句中声明变量,就是局部变量了,它们的作用域就是该语句控制的大括号封闭的范围内。默认情况下所有的数据类型都是非空类型(Non-Null),声明的变量都是不能接收空值(null)的, 但是有时变量确实有可能为空值,因此C#声明变量时,还可以指定可控类型(Nullable)

2025-07-05 10:53:00 691

原创 Blob分析及形态学分析

–––  WB1B2max(WB1WB2。

2025-07-04 21:53:44 577

原创 讲基于优化的 IMU 与视觉信息融合

忽略泰勒展开的高阶项,损失函数变成了二次函数,可以轻易得到如。这样损失函数就近似成了一个二次函数,并且如果雅克比是满秩的,分别是机体状态量,路标在滑动窗口里的起始时刻。是残差函数,比如测量值和预测值之间的差,且有。通常对于状态量之间的递推关系是非线性的方程如。机体坐标系中的加速度和角速度的偏置量估计。其中,待估计的状态量为特征点的三维空间坐标。机体的在惯性坐标系中的位置,速度,姿态,反之,如果是比较小的正数,则增大阻尼。如果是正定矩阵,即它的特征值都大于。如果是负定矩阵,即它的特征值都小于。

2025-07-03 21:31:52 816

原创 毫米波雷达 – 深度学习

Max-Pooling将Chirp压缩到1维,得到Range-Azimuth特征图;包括ADC数据,RAD数据,点云数据等,为不同层次的算法研究和实际应用提供支持。一般来说,至少要有超过10万帧的不同场景,不同天气条件下采集的数据。LSTM的输入为来自连续8帧的34维特征向量,需要tracker的辅助。包括同步的图像,激光雷达等数据,用来进行多传感器融合的研究。这个数据库场景单一,物体大部分是移动的车辆,因此难度相对较低。6个类别:轿车,公交车,自行车,行人,一组行人,垃圾桶。

2025-07-02 20:07:28 832

原创 4D 毫米波雷达

4D 指的是距离(Range),水平角度(Azimuth),俯仰角度(Elevation)和速度(Doppler)。一般来说,4D 毫米波雷达的角度分辨率相对较高,因此也经常被称为 4D 成像雷达。所以说 4D 毫米波雷达的两个主要特点是:1)可以测量高度的信息;2)角度分辨率较高。为了更好的理解这两点,首先需要了解FMCW 雷达角度分辨率的依赖因素,以及为了增加角度分辨率所采用的 MIMO 机制。1. FMCW 雷达的角度分辨率想要测量目标的方位角,至少需要两个接收天线(RX)。

2025-07-01 21:12:05 913

原创 毫米波雷达–传统方法

DBSCAN是基于密度的聚类方法,对样本分布的适应能力比K-Means更好。原理:目标相对多个接收天线的距离不同,这会导致距离FFT峰值的相位变化。2. 提取目标的特征,包括统计特征(比如点位置的均值,方差等)因此,频率差也是固定的,也就是说IF是一个频率恒定的单音信号。个频谱的峰值相同,但相位不同,包含来自多个目标的相位成分。来自三个目标的RX接收信号,每个信号有不同的延时,延时。不同的RX接收信号转化为多个单音信号,每个信号的频率差。混频器输出的是多个单音信号的叠加。对该信号进行FFT操。

2025-06-30 20:53:36 340

原创 激光雷达点云 - 物体检测

PointNet++需要将点集特征映射回原始点云(Feature Propagation),因为聚类生成的点集无法很好的覆盖所有物体。点视图和俯视图方向的改进:Point R-CNN,3D-SSD,SECOND,PIXOR等。用聚类的方式来产生多个候选点集,每个候选点集采用PointNet来提取点的特征。特征: PointNet提取点特征(点视图),然后进行Voxel量化(俯视图)PointNet++提取点特征,同时进行前景分割,以区分物体点和背景点。

2025-06-29 10:09:09 666

原创 2D视觉感知

3. 根据特征计算来自相邻帧的物体检测之间的相似度,以判断其来自同一个目标的概率。V2-V4:增强特征提取网络,采用多尺度特征图,利用Anchor来辅助边框回归。4. 将相邻帧的物体检测进行匹配,给来自同一个目标的物体分配相同的ID。2. CNN提取目标的视觉特征,卡尔曼滤波得到目标的运动特征。优点:检测和跟踪用一个网络实现,可以端对端学习,也提高了算法效率。2. 提取每个检测物体的特征,通常包括视觉特征和运动特征。不同之处在于Head的设计:物体表示为中心点,直接回归边框。

2025-06-28 10:48:06 440

原创 激光雷达点云–语义分割

Panoptic-PolarNet将语义和实例分割融合到一个网络,通过共享特征来降低计算量,达到了很好的速度和精度平衡。实例分割+物体检测作为基准方法,其分割准确度比较低,说明了物体框作为一种粗略的表示并不能直接用于精细。与VoxelNet类似的点特征提取,但是采用注意力机制来合并网格内的点(加权求和)最直接的做法:3D物体框内的点作为实例上的点,但是会有很多outlier。22个序列,约43000帧点云,每帧约10万个点,标注了28个语义类别。

2025-06-27 19:48:53 901

原创 3D视觉感知

对于每一个可能的视差(范围有限),计算匹配误差,因此得到的三维的误差数据称为Cost Volume。在图像空间中完成所有的感知任务,将结果映射到向量空间,最后融合多摄像头的感知结果。将图像特征转换到世界坐标系,融合来自多个摄像头的特征,最后得到向量空间中的感知结果。2.5D中心(ΔX, ΔY,Depth): 3D物体框的中心投影到2D图像;包含一个150°的广角摄像头,一个52°的中距摄像头和一个28°的远距摄像头。视差估计:对于左图中的每个像素点,需要找到右图中与其匹配的点。

2025-06-26 21:11:42 529

原创 多传感器标定简介

标定内容及方法雷达内参标定1) 目的由于安装原因,线束之间的夹角和设计不一致,会导致测量不准。2) 方法多线束打在平面上,利用共面约束,求解夹角误差。3) 参考论文: Calibration of a rotating multi-beam Lidar论文: Improving the Intrinsic Calibration of a Velodyne LiDAR Sensor。

2025-06-25 22:19:24 849

原创 SplaTAM环境安装与实测

然后再执⾏python scripts/splatam.py configs/replica/splatam.py 就⼀切正常了(否则会报API的。⽆论是online的还是offline的,都可以⽤iPhone Pro/Pro Max机型来做(iPad Pro也可),具备'Lidar。接着需要修改代码configs/replica/splatam.py下⾯的内容,entity替换成⾃⼰的账⼾名,project替换。我们⾸先注册wandb账⼾(会得到⼀个私钥API),举个例⼦,账⼾名:shttworth。

2025-06-23 20:27:21 876

原创 多传感器融合

激光雷达相比图像有着对光照、纹理不敏感的优点,激光雷达地图相比通用的视觉特征点描述子地图有着更好的稳定性,在安全性至上的自动驾驶领域,激光雷达方案比视觉方案鲁棒性更优,几乎所有L4级别的自动驾驶解决方案都会带有激光雷达(像特斯拉这样的纯视觉方案应用并不多),因此,从实用性上来讲,激光雷达有着视觉难以比拟的优点。

2025-06-22 09:04:57 932

原创 2D 激光 SLAM-Cartographer 实战

1.修改 cartgrapher_ros/cartprapher_files 下的 revo_lds.lua 文件,把下面的两个配置选项替换。/src/cartographer/configuration_files/trajectory_builder_3d.lua 中。参考 https://blog.csdn.net/weixin_44314245/article/details/110881565。三是 Global SLAM 部分,也称为后端. 该部分的主要任务是进行 Loop Closure。

2025-06-21 08:56:32 684

原创 3D Gaussian Splatting算法安装与实测

论⽂:3D Gaussian Splatting for Real-Time Radiance Field Rendering项⽬地址:1 概要和依赖如果在Windows⽤,有视频逐步骤指导,参考youtube视频链接本⽂档后续内容都是建⽴在Ubuntu上进⾏使⽤的下⾯内容都摘⾃README.md,纯英⽂,我们在第⼆节将展⽰实测安装算法遇到的问题和全流程••••作者只在Ubuntu 22.04做了测试;实际我们在Ubuntu 18.04和20.04进⾏了测试。

2025-06-20 20:33:49 1044

原创 LVI-SAM 简介

系统接受 3D 激光点云、单目图像和 IMU 信息作为输入。VIS 系统接受图像和 IMU 信息,雷达点云是可选的输入。通过最小化 IMU 和视觉的测量残差来得到视觉里程计。激光里程计通过最小化检测到的线面特征到特征图的距离得到。特征图保存在一个滑窗中来实时的执行。最后状态估计问题,可以简化为一个 MAP(最大化后验概率)问题。利用 iSAM2 库来优化因子图中 IMU 预积分,视觉里程计,激光里程计和闭环的约束的残差。需要注意的是,LIS 中采用的多传感器图优化旨在减少数据交换并提高系统效率。

2025-06-19 20:51:27 818

原创 VINS-Fusion 简介、安装、编译、数据集/相机实测

VINS-Fusion是***科技大学团队开发的多传感器SLAM方案,支持单目/双目相机与IMU融合。文章详细介绍了在Ubuntu18.04系统中安装依赖项、Ceres Solver和VINS-Fusion源码的步骤,并提供了Euroc数据集在三种模式(双目、单目+IMU、双目+IMU)下的运行方法。最后结合实际应用,说明了如何配置D455相机参数并运行双目+IMU模式。安装过程注意Ceres版本选择和矩阵参数格式,运行需要提前标定相机-IMU参数。该系统适用于无人机、汽车和AR/VR等自主应用的精确定位。

2025-06-15 09:25:42 883 3

原创 stm32-c8t6实现语音识别(LD3320)

‌非特定人识别‌无需用户预先录音训练,可直接识别语音指令。‌动态关键词列表‌支持动态编辑最多50条关键词(如“开灯”“关灯”),关键词以字符串形式传入芯片即可生效。关键词长度限制:不超过10个汉字或79字节拼音串。‌硬件集成度高‌内置高精度A/D和D/A转换器,无需外接Flash、RAM或AD芯片,麦克风直连即可使用。提供550mW内置音频放大器,支持声音播放功能。‌多种工作模式‌‌口令模式‌:需唤醒词(如“小呆”)触发后续指令,抗环境干扰能力强。

2025-06-08 08:35:42 557

原创 3D-激光SLAM笔记

定位/重定位:用fast-lio-localization包含定位功能,配合open3d。栅格地图生成:用octomap mapserver生成,离线。栅格地图生成:用octomap mapserver生成,离线。栅格地图生成:用octomap mapserver生成,离线。栅格地图生成:用octomap mapserver生成,离线。重定位:用读入pcd点云,创建体素ivox结构,给定初始位姿用ieskf定位。定位重定位:参考《自动驾驶与机器人中的slam技术》十讲,进行前端融合。4 方案四:入门级别。

2025-05-31 21:26:44 973

原创 基于opencv的全景图像拼接

对于平面场景和只通过相机旋转拍摄的场景来说,可以使用求每两幅图像之间的一个Homography变换来映射到一张图像的方法,还可以使用恢复相机的旋转的方式得到最终的全景图。其中(x′,y′)(x′,y′)为柱面上的坐标,(x,y)(x,y)为平面图像坐标,其坐标原点都已移至图像中心,rr 为柱面半径,ff为焦距。对每两幅相邻的柱面图像进行特征提取和匹配(特征可以选用SIFT、ORB等,可以使用OpenCV的函数实现),寻找两幅相邻图像的对应关系。

2025-05-25 16:29:35 879

原创 鱼眼相机生成-BEV鸟瞰图-入门教程

BEV鸟瞰图生成测试demo程序

2025-05-11 10:27:15 655 3

原创 用单目相机和apriltag二维码aruco实现单目定位

ArUco在OpenCV中已经集成,而AprilTag可能需要额外的库,比如Apriltag库或者apriltag_ros,需要提前标定相机,获取camera_matrix和dist_coeffs,并在代码中加载这些参数对于ArUco,可以使用detectMarkers函数来检测,然后估计位姿。对于AprilTag,需要调用特定的检测函数,比如detector.detect().

2025-05-03 09:27:15 801

time of arrival example python

python爬虫

2025-07-17

gtsam smoother example python

python爬虫

2025-07-17

【DevOps领域】DevOps落地实施流程及CI/CD代码示例:涵盖自动化部署与监控体系建设

内容概要:本文档详细介绍了DevOps落地实施的全流程方案,涵盖文化变革、流程优化、工具链搭建三个主要方面。文化上倡导打破部门壁垒并推行自动化理念;流程方面采用Git Flow分支策略和CI/CD流水线,配合蓝绿部署或金丝雀发布降低风险;工具链部分展示了从GitLab代码库到Jenkins/GitLab CI,再到SonarQube扫描、K8s集群部署以及Prometheus监控的具体链路。同时提供了.gitlab-ci.yml完整示例,包括构建、测试、部署三个阶段的关键配置如artifacts、environment和when:manual等。最后给出实施建议,强调渐进式推进、定期复盘以及完整的监控和安全集成体系。; 适合人群:从事软件开发、运维工作的技术人员,尤其是有一定经验并希望了解或正在尝试DevOps转型的企业和个人。; 使用场景及目标:①希望了解如何将DevOps理念具体落地的企业和个人;②需要掌握完整的CI/CD流水线配置方法的技术人员;③正在寻找优化现有开发运维流程解决方案的团队。; 阅读建议:此文档不仅提供了理论指导,还有实际的代码示例,因此读者应该结合自身项目情况进行对比学习,尤其要注意各个工具之间的衔接关系,在实践中不断调整优化自己的DevOps流程。

2025-07-16

深度学习三维重建python

python

2025-07-16

euroc真值数据 gd

euroc真值数据 gd

2025-07-16

update version python

python

2025-07-16

make docs python

python

2025-07-16

mapping ros2 launch

python

2025-07-16

初始化路径python

linux

2025-07-15

centernet 测试python

centernet 测试python

2025-07-15

center net python

python

2025-07-15

centernet python 模型

python

2025-07-15

noise model python

睿抗

2025-07-14

imu bias python

睿抗

2025-07-14

gtsam python

睿抗

2025-07-14

python mvsnet 训练

gitcode

2025-07-13

python mvsnet 推理

gitcode

2025-07-13

python 表面纹理渲染

gitcode

2025-07-13

yolov3 python 训练模型

yolo

2025-07-12

yolov3 python 模型

yolo

2025-07-12

nvm to ply python

ai

2025-07-26

【电子设计竞赛】2025年全国大学生电赛实战项目与训练内容:现代电子技术领域竞赛准备指南介绍了202

内容概要:文章介绍了2025年全国大学生电子设计竞赛的相关资源和训练内容。竞赛时间为2025年7月30日8:00至8月2日20:00,分为本科生组和高职高专组,题目涵盖现代电子技术领域,如嵌入式系统、可编程器件等,且强调“理论设计+实际制作”。校赛真题包括电源类(如设计电流跟踪控制DC/DC变换器)和机械类(如波形产生与分析装置)。专项技术训练资源涵盖电源设计(如DC/DC变换器方案)、控制算法与嵌入式开发(如PID调试实践)。拓展实战项目则提供了能源创新案例(如光储直柔系统、绿电空港方案)和工业级应用训练。此外,还提供了官方资料包、校赛题目详解以及PID控制实战教程等资源获取链接。 适合人群:对电子设计竞赛感兴趣或准备参加2025年全国大学生电子设计竞赛的学生和技术爱好者。 使用场景及目标:①了解竞赛规则和要求,熟悉题目类型;②掌握电源设计、控制算法、信号处理等专项技术;③借鉴能源创新案例和工业级应用,提升实战能力。 其他说明:资源获取链接提供了官方资料包、校赛题目详解、PID控制实战教程等,有助于参赛者更好地准备竞赛。

2025-07-24

合并点云文件 python

python

2025-07-23

download python

python

2025-07-23

三维重建 深度学习可视化python

python

2025-07-23

Dify Hackathon python示例代码

Dify Hackathon python示例代码

2025-07-22

Cursor AI编程示例代码python程序

Cursor AI编程示例代码python程序

2025-07-21

扣子COZE AI 编程案例 python程序

扣子COZE AI 编程案例 python程序.py

2025-07-21

三维重建 python程序

ai

2025-07-20

匹配内点对 python

ai

2025-07-20

三维重建 database python

ai

2025-07-20

map to rgb matlab 程序

map to rgb matlab 程序

2025-07-19

camera python

ai

2025-07-19

clang format code python

ai

2025-07-19

export inlier python

cursor

2025-07-18

geography lib python

卓晴

2025-07-18

geography lib python

cursor

2025-07-18

geography lib python

cursor

2025-07-18

geography lib python

cursor

2025-07-18

gps factor example

python爬虫

2025-07-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除