Matplotlib绘图的简单使用(2)

本文详细介绍了使用Matplotlib绘制折线图、柱状图和散点图的方法,包括函数参数详解及实例代码,帮助读者快速掌握数据可视化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一)折线图

画折线图需要用到plot()函数
plot( x, y, color, marker, label, linewidth, markersize )

参数解释默认值
x数据点的x坐标0,1,2,3…
y数据点的y坐标不可省略
color数据点的颜色
marker数据点的样式’o’(圆点)
lable图例文字
linewidth折线的宽度数据点的大小
markersize数据点的大小
                                             marker参数——数据点样式
取值解释
  • |实线
    – | 虚线
    -. |点线
    : |点虚线
    . | 点
    , | 像素
    o | 圆形
  • |+号标记
    x | x号标记
    v |朝下的三角
    ^ | 朝上的三角
    < | 朝左的三角

| 朝右的三角
D |钻四形
d | 小版钻石形
_ | 水平线形

下面将画出芜湖市24小时温度统计的折线图(温度数据随机生成的)

import matplotlib.pyplot as plt
import numpy as np


plt.figure(figsize=(7,5),facecolor='green')#创建figure(画布),原谅色.PS:画布并非必须创建

plt.rcParams['font.sans-serif']=['STXINWEI']#设置中文字体为华文新魏,但好像并不是所有的中文字体都支持

plt.title("芜湖市24小时温度统计",fontsize=17)#设置标题


y=np.random.randint(25,35,24)

plt.plot(y,label='温度')

plt.xlim(0,23)#设置x轴坐标范围
plt.ylim(0,51)#设置y轴坐标范围
plt.xlabel('时间',fontsize=13)
plt.ylabel('当地温度值',fontsize=13)


plt.legend()#显示图例
plt.show()#使用该函数进行显示

在这里插入图片描述

(二)柱状图

柱状图的绘制需要用到bar函数
bar( x, y, width, facecolor, edgecolor, label )

参数解释
xx轴的序列个数
yy 条纹高度
width条纹宽度
facecolor条纹颜色
edgecolor条纹的边缘颜色
label条纹对应的图例名称

下面用柱状图显示我与班长的本学期各项成绩对比(数据瞎编的)

import matplotlib.pyplot as plt
import numpy as np


plt.figure(figsize=(7,5),facecolor='green',dpi=100)#创建figure(画布),原谅色.PS:画布并非必须创建

plt.rcParams['font.sans-serif']=['STXINWEI']#设置中文字体为华文新魏,但好像并不是所有的中文字体都支持

plt.title("我与班长本学期各项成绩统计对比",fontsize=17)#设置标题

subject_name = ['概率论','信号与系统','激光原理','光电物理','模电','单片机','大学英语','毛概','形势与政策']

x = range(len(subject_name))#自动生成X坐标序列

y1=[99,99,99,99,99,99,99,99,99]#我的成绩(瞎编的)
y2=-np.random.randint(0,100,9)#班长的成绩(随机初始化)

plt.xticks(x, subject_name)#修改x轴的刻度显示


plt.bar(x, y1,width=0.8,facecolor='green',edgecolor='black',label='我爱吃菠菜')
plt.bar(x, y2,width=0.8,facecolor='red',edgecolor='yellow',label='胖班长')

# 2.2 添加网格显示
#plt.grid(linestyle="--", alpha=1)#第一个参数表示格点现状,第二个参数表示格点的透明度0~1(好像是)


plt.tight_layout()#这里使图像尽可能占满整个画布,如果不使用该函数,下面的学科名就会因为太长重叠到一起
plt.legend()#显示图例
plt.show()#使用该函数进行显示

在这里插入图片描述

(三)散点图

绘制散点图需要用到scatter() 函数

scatter( x, y, scale, color, marker, label )

参数解释默认值
x数据点的x坐标不可省略
y数据点的y坐标不可省略
scale数据点的大小36
color数据点的颜色’o’(圆点)
marker数据点的样式
label图例文字
import matplotlib.pyplot as plt
import numpy as np


plt.figure(figsize=(7,5),facecolor='green',dpi=100)#创建figure(画布),原谅色.PS:画布并非必须创建

plt.rcParams['font.sans-serif']=['STXINWEI']#设置中文字体为华文新魏,但好像并不是所有的中文字体都支持

plt.title("散点图显示随机数",fontsize=17)#设置标题

x1=np.random.randint(0,101,51)#随机初始化
x2=np.random.randint(0,101,51)#随机初始化
y1=np.random.randint(0,101,51)#随机初始化
y2=np.random.randint(0,101,51)#随机初始化


plt.scatter(x1, y1, color="green",marker='*' ,label="*号的随机数")
plt.scatter(x2, y2, color="red",marker='+',label="+号的随机数" )

# 2.2 添加网格显示
#plt.grid(linestyle="-.", alpha=100)#第一个参数表示格点现状,第二个参数表示格点的透明度


#plt.tight_layout()#这里使图像尽可能占满整个画布,如果不使用该函数,下面的学科名就会因为太长重叠到一起
plt.legend()#显示图例
plt.show()#使用该函数进行显示

在这里插入图片描述

(四)备注

上面的plt.xticks(x, subject_name),这是修改x轴的刻度显示的函数,小伙伴们可自行百度其使用方法,网上都有,而其它的使用频率也是比较频繁的,还有就是plt.grid(linestyle=“-.”, alpha=100)#第一个参数表示格点现状,第二个参数表示格点的透明度。想这些小函数在数据可视化中还有很多,也经常使用到。matplotlib玩的好,这些小的细节都是不可忽略的。

下面推荐一个网站,上面都是matplotlib的画图实例,都有程序。配合着看,相信你也可以画出很多精美的图表,而且都给你分类好了,个人觉的matplotlib画图,这一个网站就够了。

传送门

(五)结语

如果有什么错误的地方,还请大家批评指正,最后,希望小伙伴们都能有所收获。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值