- 博客(11)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
原创 2022毕设笔记:基于FasterRCNN的垃圾分类系统(一)从零开始准备
理论准备 原理 飞桨-深度学习 技术实现 使用ImageNet在faster rcnn上训练自己的分类网络 Faster R-CNN Tensorflow+python 3.5 在Windows10环境下配置实现 笔记: 我的电脑配置是win10+python3.8(anaconda3) 从飞桨找到了一些有趣的东西,或许可以用百度的PaddleDetection实现 数据集也可以从飞桨的网站下载 ...
2021-12-10 11:13:54
827
原创 使用Logistic回归来预测患有疝气病的马的存活问题
记得要写main函数 import numpy as np from numpy import random def sigmoid(inX): return 1.0/(1 + np.exp(-inX)) def stocGradAscent(dataMatrix, classLabels, numIter=150): m,n = np.shape(dataMatrix) weights = np.ones(n) #initialize to all ones fo
2021-06-21 15:42:44
801
1
原创 机器学习-分类算法实战-使用朴素贝叶斯分类器过滤垃圾邮件
充分利用 Python 的文本处理能力将文档拆分为词向量。这将用于对文本进行分类。我们将构建另一个分类器,看看它在现实世界的垃圾邮件数据集上的表现如何 运行结果如上图 下面是代码 # -*- coding: utf-8 -*- ''' 使用python把文本分割成一个个单词,构建词向量 利用朴素贝叶斯构建分类器从概率的角度对文本进行分类 ''' import numpy as np import re from random import shuffle '''创建一个词汇表''' def crea
2021-06-21 14:01:49
576
原创 机器学习实战-决策树预测隐形眼镜类型
我们将用递归来构建分类器并使用 Matplotlib 绘制。分类器获取隐形眼镜处方的数据,并用尝试预测人们需要什么镜片。 需要用到的库 # -*- coding: utf-8 -*- from math import log import operator import matplotlib.pyplot as plt 主要代码 def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for
2021-06-21 13:42:58
818
原创 2021-06-18计算机视觉整理
都是基础简单的概念题 一.单选题(共5题,50.0分) 1可见光属于(A) A、电磁波 B、机械波 C、声波 D、超声波 2表示一幅灰度图像,一般用(B) A、一个常数 B、二维矩阵 C、三维矩阵 D、一个变量 3彩色图像中,每个像素点用 表示色彩值© A、一个值 B、二个值 C、三个值 D、四个值 4m-邻接是为了消除像素间连接的© A、相同 B、向异 C、歧义 D、相容 5指纹识别技术可用于(A) A、身份确认 B、年龄确认 C、性别确认 D、色盲确认 二.多选题(共1题,10.0分) 1图像处理技术有
2021-06-18 11:29:20
2811
原创 数据挖掘简答知识点总结
绪论 为什么进行数据挖掘? (1)已获得的大量数据往往是数据丰富但信息贫乏的 (2)计算设备变得廉价且功能强大 (3)没有强大的工具的话,数据量已经超过人类的理解能力 (4)数据收集存储的速度越来越快 (5)传统技术已经不适用于原始数据 (6)数据挖掘有助于科学研究 什么是数据挖掘? 从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息或知识的非平凡过程。 数据源必须是真实的、大量的、含噪声的; 发现的是用户感兴趣的知识; 发现的知识要可接受、
2021-06-18 11:24:46
2644
原创 约会数据集Knn算法python实现
对约会数据集datingTestSet.txt的数据进行分析,训练分类器。分类器训练好之后,输入“每年获得的飞行常客里程数”,“玩视频游戏所消耗时间百分比”,“每周消费的冰激淋升数”这3个特征值来预测你对这个人的印象:“讨厌”,“有些喜欢”或“非常喜欢”。 # -*- coding: UTF-8 -*- from matplotlib.font_manager import FontProperties import matplotlib.lines as mlines import matplotlib.
2021-05-20 13:27:58
1443
3
原创 PTA计算机网络第六章题目及答案
判断 单选 多选 填空 主观题 请简述应用层中利用SMTP协议发送邮件时三个阶段的基本内容。 1.连接建立:连接是在发送主机的SMTP客户和接收主机的SMTP服务器之间建立的。 2.邮件传送。 3.连接释放:邮件发送完毕后,SMTP应释放TCP连接。 简述本地域名服务器进行域名解析的过程。 当一个主机打出域名解析请求时,这个请求首先被送往默认的(本地)域名服务器。 本地域名服务器通常距离用户不超过几个路由的距离。 当所要解析的域名属于同一个本地子域时, 本地域名服务器就能立即解
2021-01-17 20:27:57
2143
4
原创 PTA计算机网络第五章题目及答案
这里写自定义目录标题判断题单项选择题多选题填空题主观题 判断题 TCP、UDP协议都要通过IP协议来发送、接收数据。(T ) 为了保证连接的可靠建立,TCP通常采用“三次握手”技术建立连接。( T) UDP 是面向连接的运输层协议。F 端口号是 16 位的二进制数。T 单项选择题 多选题 TCP 可靠传输的实现依赖于(ABCD )。(2分) A.流量控制 B.分段和重组 C.确认机制 D.重传机制 填空题 4-5应用程序定义的 Socket 包括IP地址和端口号两部分 主观题 1.简述TCP
2021-01-17 20:04:36
3056
2
原创 《模式识别》Fisher线性判别C++实现
Fisher线性判别C++实现 把王丽梅老师的《模式识别》里源码实现了一下 原书共11页代码,和同学分段写了一节课实现了 样本数据是老师给的 double sw[32][8][8]; //类内离差矩阵 double mj[32][8]; //模式均值矢量 double sww[8][8]; //类间离差矩阵 //#include "stdafx.h" #include "math.h" #include "conio.h" #include <fstream> #i
2020-12-28 10:20:25
677
2
TA创建的收藏夹 TA关注的收藏夹
TA关注的人