解决服务器上运行YOLO时字体问题

问题描述:运行YOLO时,需要Arial.ttf,由于网络较差,可以先将字体下载到本地,再上传到服务器。

下载地址:项目首页 - Arial字体资源文件下载:本仓库提供了一系列Arial字体的ttf格式文件下载。Arial字体是一种广泛使用的无衬线字体,适用于多种设计场景,包括印刷、网页设计等 - GitCode

然后进入root

sudo su

 进入指定目录:

cd /root/.config/Ultralytics/

将字体移动到指定目录:

sudo mv Arial.ttf /root/.config/Ultralytics/

完成后,可继续运行!

### 部署和运行YOLO模型于远程服务器 为了在远程服务器上部署并运行YOLO模型,需考虑几个关键因素以确保顺利实施。通常情况下,在远程服务器环境中设置YOLO涉及环境配置、依赖项安装以及模型文件传输等步骤[^1]。 #### 环境准备 对于大多数Linux发行版而言,建议创建虚拟环境来隔离项目所需的Python包版本和其他库。这可以通过`conda`或者`venv`实现: ```bash python3 -m venv yolov8_env source yolov8_env/bin/activate ``` 接着更新pip至最新版本,并通过pip安装必要的软件包,比如PyTorch及其对应的CUDA扩展(如果GPU可用),OpenCV-Python以及其他辅助工具。 #### 安装YOLO框架及相关组件 根据所选的具体YOLO变体(如YOLOv8),下载官方仓库中的源码或二进制发布版本。对于基于PyTorch构建的新一代YOLO系列来说,可以直接利用预编译好的whl文件简化安装过程: ```bash pip install ultralytics ``` 此命令会自动处理所有必需的依赖关系,使得后续操作更加简便高效。 #### 数据集与权重迁移 将本地的数据集上传到服务器指定位置;同样地,如果有预先训练好的权重文件也需要同步过去。可以借助SCP(Secure Copy Protocol)或者其他FTP/SFTP客户端完成这项工作。 #### 运行推理脚本 编写简单的Python脚本来加载模型并对图像执行预测任务。下面是一个基本的例子展示如何调用ultralytics下的yolov8n.pt作为默认的小型网络结构来进行目标检测: ```python from ultralytics import YOLO model = YOLO('path/to/yolov8n.pt') # 加载模型 results = model.predict(source='image.jpg', save=True, imgsz=640) for result in results: boxes = result.boxes.cpu().numpy() print(boxes) ``` 上述代码片段展示了怎样快速启动YOLO模型进行图片级别的物体识别,并保存带有标注框的结果图。 #### 性能监控与日志记录 考虑到长运行的服务稳定性问题,应该建立完善的错误捕捉机制和服务状态跟踪体系。定期查看CPU/GPU利用率、内存消耗情况有助于及发现潜在瓶颈所在之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SQingL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值