上一篇《2024年RAG关键技术大盘点(1月—4月)》盘点2024年1月到4月内RAG领域的关键技术突破,本文会继续以时间为顺序盘点2024年5月到8月内RAG领域的关键技术突破。
5月
IM-RAG:通过学习内在独白的多轮检索增强生成
论文:https://arxiv.org/abs/2405.13021
简介:该论文提出了一种名为 IM-RAG (Inner Monologue Retrieval-Augmented Generation) 的新方法,专为需要多轮推理和信息检索的复杂任务设计。IM-RAG 的核心思想是引入“内在独白 (Inner Monologue)”机制,在生成过程中显式记录模型的思考过程。每一轮检索和生成都会参考之前的推理步骤,以动态调整检索内容并优化响应。通过这种循环反馈的方式,IM-RAG 更加擅长处理链式推理、多跳问答等复杂任务。实验结果表明,IM-RAG 在知识密集型对话和多轮问答任务中显著提升了回答的准确性和连贯性。
DB-GPT:基于 AWEL(Agentic Workflow Expression Language)和智能体的 AI 原生数据应用开发框架
项目:https://github.com/eosphoros-ai/DB-GPT
简介:DB-GPT 是一个专为构建 AI 原生数据应用 而设计的开发框架,核心基于 AWEL(Agentic Workflow Expression Language) 和 智能体(Agents)。该框架旨在帮助开发者快速构建数据驱动的 AI 应用。AWEL 提供了一种直观的工作流描述语言,便于开发者定义复杂的 AI 任务流程,而智能体模块则用于执行这些流程,支持多步骤推理、数据查询、知识检索等功能。DB-GPT 特别适用于需要结合大型语言模型(LLM)和数据处理的场景,帮助开发者高效地创建智能问答系统、数据分析工具及各类 AI 应用。
FlashRAG:用于高效检索增强生成研究的模块化工具包
论文:https://arxiv.org/abs/2405.13576
项目:https://github.com/RUC-NLPIR/FlashRAG
简介:该论文提出了 FlashRAG,一个专为检索增强生成(RAG)研究设计的模块化工具包。FlashRAG 提供了灵活的组件化设计,涵盖了检索、重排序、生成等关键模块,方便研究人员快速实验和替换不同的算法模型。该工具包强调高效性,优化了检索速度和内存使用,特别适合在大规模数据集和复杂查询场景下使用。FlashRAG 的设计还兼容多种 RAG 框架,便于快速集成和扩展,助力研究人员和工程师更便捷地探索和优化 RAG 模型的性能。
GRAG:基于图结构的检索增强生成模型
论文:https://arxiv.org/abs/2405.16506
项目:https://github.com/HuieL/GRAG
简介:该论文提出了 GRAG (Graph Retriev