正则化线性模型
线性模型减少过度拟合的方法之一对模型正则化,它拥有的自由度越低,就越不容易过度拟合数据,比如将多项式模型正则化的简单方法降低多项式的阶数。比如将多项式正则化的简单化方法就是降低多项式的阶数。 【 正则化:约束它】
而对线性模型来说,正则化通常通过约束模型的权重来实现的。
岭回归
岭回归是线性模型的正则化版本,在成本函数中增加一个α∑i=1nθi2\alpha\sum_{i=1}^n\theta_i^2α∑i=1nθi2可以看做是θ\thetaθ的L2f范数的平方。正则惩罚项只能在训练的时候添加到成本函数中,一旦训练完成需要使用未经正则化的性能来评估模型性能。
超参数α\alphaα用来控制正则化的程度,如果α\alphaα非常的大,那么权重参数将会非常的小,十分的接近零。
岭回归的成本函数为:
J(θ)=MSE(θ)+α12∑i=1nθi2 J(\theta) = MSE(\theta) + \alpha\frac{1}{2}\sum_{i=1}^n\theta_i^2 J(θ)=MSE(θ)+α21i=1∑nθi2
按照之前的推导公式先求释然函数,再利用最小二乘法可以很容易的推导出MSE的批量梯度下降公式为:
∇θMSE(θ)=2mXT⋅(X⋅θ−y)+αW \begin{aligned} \nabla_\theta MSE(\theta) = \frac{2}{m}X^T\cdot(X \cdot \theta - y)+\alpha W \end{aligned} ∇θMSE(θ)=m2XT⋅(X⋅θ<