normal linear model

这篇博客探讨了正则化线性模型,包括岭回归、套索回归和弹性网络。岭回归通过L2范数正则化减少过拟合,而套索回归利用L1范数实现特征选择。弹性网络结合两者优点。文中还介绍了SGDRegressor参数,如penalty、l1_ratio和learning_rate,并提到了早期停止法作为正则化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正则化线性模型

线性模型减少过度拟合的方法之一对模型正则化,它拥有的自由度越低,就越不容易过度拟合数据,比如将多项式模型正则化的简单方法降低多项式的阶数。比如将多项式正则化的简单化方法就是降低多项式的阶数。 【 正则化:约束它】

而对线性模型来说,正则化通常通过约束模型的权重来实现的

岭回归

岭回归是线性模型的正则化版本,在成本函数中增加一个α∑i=1nθi2\alpha\sum_{i=1}^n\theta_i^2αi=1nθi2可以看做是θ\thetaθ的L2f范数的平方。正则惩罚项只能在训练的时候添加到成本函数中,一旦训练完成需要使用未经正则化的性能来评估模型性能。
超参数α\alphaα用来控制正则化的程度,如果α\alphaα非常的大,那么权重参数将会非常的小,十分的接近零。
岭回归的成本函数为:
J(θ)=MSE(θ)+α12∑i=1nθi2 J(\theta) = MSE(\theta) + \alpha\frac{1}{2}\sum_{i=1}^n\theta_i^2 J(θ)=MSE(θ)+α21i=1nθi2
按照之前的推导公式先求释然函数,再利用最小二乘法可以很容易的推导出MSE的批量梯度下降公式为:
∇θMSE(θ)=2mXT⋅(X⋅θ−y)+αW \begin{aligned} \nabla_\theta MSE(\theta) = \frac{2}{m}X^T\cdot(X \cdot \theta - y)+\alpha W \end{aligned} θMSE(θ)=m2XT(Xθ<

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值