- 博客(10)
- 收藏
- 关注
原创 4卡4090服务器GraphRAG环境部署、加载ollama向量模型及向量知识图谱构建、加载vllm本地DeepSeek 32B推理模型无缝接入及API接口调用
本文介绍了在4卡4090服务器上部署GraphRAG环境的过程。硬件配置包括双路至强金牌6148处理器、128GB内存和4块4090显卡。创建Python3.10虚拟环境、安装GraphRAG 0.5.0及相关依赖包,以及修改源代码以支持本地ollama向量模型和vllm推理模型。重点说明了如何修改openai_embeddings_llm.py和embedding.py文件,将原OpenAI接口替换为本地ollama接口,实现向量知识图谱构建和本地大模型推理的无缝接入。适用于需要数据保密的企业环境.
2025-05-27 16:41:25
975
原创 4卡4090服务器ollama环境部署、模型下载、模型调用及API接口调用
本文详细介绍了在配备4块NVIDIA 4090显卡的高性能服务器上部署Ollama环境的全过程。内容包括:硬件配置(Intel至强61482 CPU、128GB内存、44090显卡),基于Ubuntu 24.04系统创建Python 3.12虚拟环境,通过离线方式安装PyTorch 2.4.0(CUDA 12.4)和ModelScope依赖项,以及Ollama的离线安装与配置。文章还提供了服务管理方法(启动/停止)、端口监控技巧,并分享了关键安装文件的下载链接。该指南特别针对需要处理大模型的高性能计算环境.
2025-05-26 13:44:54
1072
原创 SadTalker的安装、部署及模型运行
本文详细分享了SadTalker的安装部署经验。基于Intel至强E5 CPU、Tesla P40显卡、Python 3.8环境,逐步完成了包括FFmpeg、PyTorch及多个依赖项的安装。重点说明了模型权重文件的下载位置,并提供了完整的Python调用示例代码。文章还展示了运行成功的视频输出结果,并提醒需与LivePortrait配合使用以获得最佳效果,同时强调要严格按照顺序安装各项依赖。整个安装过程图文并茂,为开发者提供了清晰的参考指南。
2025-05-24 16:51:29
809
原创 基于windows的MCP+Cherry Studio+本地应用的MCP Server开发成功经验分享
本文分享了在Windows 10环境下,基于华为笔记本D14(i5-12450,16G内存)成功搭建MCP+Cherry Studio+本地应用开发环境的经验。首先安装基础环境及配置清华镜像源以加速依赖包的下载。接着,安装并配置Java JDK,确保环境变量正确设置。随后,使用uv工具初始化MCP项目,并安装相关依赖。最后,通过nvm或fnm安装Node.js环境,并配置npm镜像源。整个过程详细记录了每一步的操作命令和验证方法,确保开发环境的顺利搭建。
2025-05-23 14:23:18
1141
原创 LivePortrait安装及使用图片及视频模仿及生成新视频的功能经验分享
本文主要分享Ubuntu系统上安装和使用LivePortrait工具的经验;结了合成过程中需要注意的问题,如脸部像素大小、首张脸部表情、视频帧数和口型保持等。这些经验为学习和应用LivePortrait提供了实用参考。
2025-05-21 18:45:00
363
原创 ubuntu安装redis及消息队列RabbitMQ及redis_cli的命令经验分享
本文分享了在Ubuntu系统上安装Redis和RabbitMQ的步骤及相关命令。
2025-05-21 18:00:00
260
原创 安装opencv用于图形算法的多次安装实战经验分享
本文分享了在Ubuntu系统上安装OpenCV的实战经验,详细描述了多次安装失败的过程,包括从GitHub克隆OpenCV和OpenCV_contrib源码、使用CMake配置参数、编译和安装等步骤。最终,通过降低OpenCV版本至4.6.0.66并安装opencv-contrib-python依赖项,成功解决了安装过程中卡在84%的问题。这一经验对于其他开发者在类似环境下安装OpenCV具有参考价值。
2025-05-21 09:03:10
527
原创 ubuntu安装nvm、node的成功方法(含提供nvm下载链接)
ubuntu安装nvm、node的成功经验,虽然nvm、node整体安装较简单,但是本人由于国外网站下载问题,尝试过很多方法才成功,本人将国外下载好的软件分享在上面链接中,以减少大家和我一样为下载安装程序一直打转。希望通过我的不断尝试下载后总结的经验能够帮助到大家。
2025-05-18 21:58:02
682
原创 ubuntu 安装显卡驱动、cuda、cudnn、vscode的成功经验
本文分享了在Ubuntu系统上安装显卡驱动、CUDA、cuDNN和VSCode的详细步骤。首先,更新系统软件包并安装pip。接着,通过添加官方PPA源安装NVIDIA显卡驱动,并禁用nouveau驱动。随后,下载并安装CUDA,配置环境变量。cuDNN的安装包括下载、解压、复制文件到CUDA目录,并设置权限和环境变量。最后,下载并安装VSCode。整个过程涉及多个命令和配置文件的修改,确保每个步骤正确执行是关键。本文为新手提供了实用的指导,帮助他们在Ubuntu系统上顺利搭建人工智能开发环境。
2025-05-16 16:37:40
613
原创 Ubuntu的本地模型安装说明
本文详细介绍了在Ubuntu系统上安装本地模型的步骤,适用于配备Intel至强E5 CPU、64G内存和Tesla P40显卡的硬件环境。首先,通过pip安装Jupyter Notebook,并下载并安装Anaconda环境。接着,创建Python 3.9虚拟环境,并安装必要的依赖项,如PyTorch、ModelScope、tiktoken等。此外,还介绍了如何下载和运行大模型,以及安装Nginx用于模型发布。最后,提供了安装过程中的注意事项,如CUDA版本匹配、环境导出和软件运行状态查看等。
2025-05-16 16:03:35
1169
2
python知识领域,该代码主要是示例通过python构建三层架构编写后端程序(由于当前项目数据层采用接口,因此缺少数据层代码,但是数据层代码就是与mysql的数据建模,很简单,需要可关注及留言)
2025-05-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人