- 博客(12)
- 收藏
- 关注
原创 Xception、effort、ucf算法复现详解
本文介绍了基于简化版Xception模型的深度伪造检测入门教程。主要包含代码下载、目录结构解析、环境搭建和训练流程四个部分。作者使用信业官方比赛baseline代码,相比原版DeepFakeBench更为简洁。文章详细说明了项目目录中各文件夹功能,包括配置、数据集、检测器等模块,并提供了关键文件下载链接。训练流程涵盖数据预处理、配置文件修改等关键步骤
2025-07-23 11:20:28
919
原创 DeepFake 复现坑点记录
本文总结了在Ubuntu系统下配置深度学习环境时遇到的常见问题及解决方案:1)PyCharm无法识别conda虚拟环境时,直接在virtualenv中查找;2)CUDA相关报错可通过添加环境变量解决;3)内存不足问题多由batchsize冲突导致;4)提出了UCF和Xception模型的迁移方法与训练配置技巧,包括文件结构调整、参数设置等;5)介绍了通过workers参数提升数据处理效率的方法。作者分享了从环境配置到模型训练的全流程实践经验,重点解决了多个实际开发中的典型问题。
2025-07-23 09:43:23
812
原创 ubuntu深度学习数据集处理方法:数据md5码校验数据完整性、tar.gz格式数据集合并与解压
深度学习训练中,大容量数据集下载常采用分段压缩方式以避免网络中断风险。本文介绍分段压缩数据集的完整处理方法:1)按序号重命名文件;2)使用md5sum工具进行文件完整性校验;3)通过cat命令合并分段文件;4)最终使用tar命令解压合并后的完整文件。该方法既保证了数据完整性,又解决了大文件下载中断的风险。文中详细演示了从校验、合并到解压的全流程操作步骤,为处理类似分段数据集提供了实用指南。
2025-07-09 17:57:41
838
原创 VOC格式(xml)数据集转换yolo(txt)训练yolov5笔记
以下载的voc格式MAR20数据集为例,将其转换为yolov5使用的txt格式训练数据。MAR20标注分为HBB和OBB格式,这里我们用的是HBB,OBB后续研究明白了再写。2、第一行的classes也需要更换为自己对应的类别列表。1、主函数中的三个路径参数,将其换成自己对应的路径即可;三、对分好的yolo数据集进行划分。二、VOC转yolo格式代码。一、VOC标注文件示例。参考了这个大佬的博客。
2025-05-28 09:01:16
442
原创 Ubuntu18.04+GTX1060(1660)+cuda10.1+cudnn7.6.5+pytorch1.7.1配置
深度学习环境配置笔记
2022-07-27 18:43:57
2074
1
原创 解决open3d库安装完成后,导入时报错“ImportError: DLL load failed: 找不到指定的模块”
问题描述:安装了多次open3d库,pyhton3.5,3.6,3.7版本得均试过,虽然显示安装成功,但是导入的时候就时会报错,这个时候参考了https://www.pythonheidong.com/blog/article/233544/这个大佬的博客,然后去下载了一个依赖查询器(要的可以留言哈,当然也可以根据博客中提到的自行下载)。利用这个依赖查询,发现自己缺少VCRUNTIME140_1.dll这个模块,然后我又去https://cn.dll-files.com/download/770184b0a
2020-08-27 09:25:53
3950
4
原创 OPEN3D 可视化使用
一、自建随机点并显示import open3dimport numpy as nppcd = open3d.geometry.PointCloud() # 首先建立一个pcd类型的数据(这是open3d中的数据形式)np_points = np.random.rand(100, 3) # 随机生成点云# 将点云转换成open3d中的数据形式并用pcd来保存,以方便用open3d处理pcd.points = open3d.utility.Vector3dVector(np_points)# 将
2020-06-25 16:59:26
7026
12
转载 conda 配置环境的方法
主要是参考本篇博主的文章,留作以后学习参考,如果有侵权,立马删除https://blog.csdn.net/SARACH_WONG/article/details/89328307#_9
2020-06-10 21:19:33
4473
原创 PointNet++自我总结
PointNet++主要解决了2个问题:一是PointNet点与点之间的局部特征丢失的问题;二是对于点云密度不均匀导致的对于部分点云稀疏处的特征无法准确提取。一、解决局部特征丢失的问题作者主要是采用了对整个点云以一定的邻域约束关系划分为n个球形邻域,每个球形邻域包含k个点,并对这每个球形邻域单独使用PointNet提取特征,将每个球形邻域聚类为一个特征点,再对这n个球形邻域形成的特征点再次重复上述步骤,提取更为精细的特征。这样就保全了点与点之间的局部信息。但这样会面临的问题就是,对于点云稀疏部分区域,如
2020-06-05 08:54:21
723
3
原创 PointNet自我总结
一、网络的总体架构神经网络的本质是一个可以变化的函数(本文的函数如下图所示)所有的训练就是为了调整网络中的权值去使它逼近一个能够处理当前任务的函数,由于点云具有无序性(是一堆空间点的集合,无法保证每次输入网络时点的顺序都是相同的,这就会可能出现,同一个物体的点云,多次输入网络后所提取的特征不同,也就无法实现与本来的标签进行匹配),处理点云的这个神经网络(函数)必须具有对称性(也就是输入的顺序,不影响输出结果,eg,加法,乘法就是对称的)。本文引入的是MaxPooling,但若直接对低维度的特征进行池化操
2020-06-05 08:31:13
400
用于xception、ucf、effort等深度鉴伪装算法的数据预处理工具包
2025-07-29
Xception、effort、ucf、sbi深度鉴伪专用测试数据集
2025-07-28
yolov8m+MAR20数据集训练权重
2025-06-13
基于opencv的人脸识别计数算法,通过对照片、视频流的识别,瞬间输出画面中的人脸数量,完成数量校验
2025-06-13
【手把手教学】基于OpenCV+Python的人脸识别签到系统
2025-06-12
YOLOv5l+visdrone2019数据集训练权重
2025-05-30
yolov5+MAR20数据集训练权重
2025-05-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人