自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 Xception、effort、ucf算法复现详解

本文介绍了基于简化版Xception模型的深度伪造检测入门教程。主要包含代码下载、目录结构解析、环境搭建和训练流程四个部分。作者使用信业官方比赛baseline代码,相比原版DeepFakeBench更为简洁。文章详细说明了项目目录中各文件夹功能,包括配置、数据集、检测器等模块,并提供了关键文件下载链接。训练流程涵盖数据预处理、配置文件修改等关键步骤

2025-07-23 11:20:28 919

原创 DeepFake 复现坑点记录

本文总结了在Ubuntu系统下配置深度学习环境时遇到的常见问题及解决方案:1)PyCharm无法识别conda虚拟环境时,直接在virtualenv中查找;2)CUDA相关报错可通过添加环境变量解决;3)内存不足问题多由batchsize冲突导致;4)提出了UCF和Xception模型的迁移方法与训练配置技巧,包括文件结构调整、参数设置等;5)介绍了通过workers参数提升数据处理效率的方法。作者分享了从环境配置到模型训练的全流程实践经验,重点解决了多个实际开发中的典型问题。

2025-07-23 09:43:23 812

原创 ubuntu深度学习数据集处理方法:数据md5码校验数据完整性、tar.gz格式数据集合并与解压

深度学习训练中,大容量数据集下载常采用分段压缩方式以避免网络中断风险。本文介绍分段压缩数据集的完整处理方法:1)按序号重命名文件;2)使用md5sum工具进行文件完整性校验;3)通过cat命令合并分段文件;4)最终使用tar命令解压合并后的完整文件。该方法既保证了数据完整性,又解决了大文件下载中断的风险。文中详细演示了从校验、合并到解压的全流程操作步骤,为处理类似分段数据集提供了实用指南。

2025-07-09 17:57:41 838

原创 yolo系列改建中文标签

本位主要介绍了将yolo系列算法的检测结果改建为中文标签显示的方法

2025-07-08 10:08:15 683

原创 yolov5:win10深度学习环境搭建(GTX1060显卡、RTX4090、A2000)

yolov5深度学习环境搭建

2025-05-30 09:46:46 1085

原创 VOC格式(xml)数据集转换yolo(txt)训练yolov5笔记

以下载的voc格式MAR20数据集为例,将其转换为yolov5使用的txt格式训练数据。MAR20标注分为HBB和OBB格式,这里我们用的是HBB,OBB后续研究明白了再写。2、第一行的classes也需要更换为自己对应的类别列表。1、主函数中的三个路径参数,将其换成自己对应的路径即可;三、对分好的yolo数据集进行划分。二、VOC转yolo格式代码。一、VOC标注文件示例。参考了这个大佬的博客。

2025-05-28 09:01:16 442

原创 Ubuntu18.04+GTX1060(1660)+cuda10.1+cudnn7.6.5+pytorch1.7.1配置

深度学习环境配置笔记

2022-07-27 18:43:57 2074 1

原创 解决open3d库安装完成后,导入时报错“ImportError: DLL load failed: 找不到指定的模块”

问题描述:安装了多次open3d库,pyhton3.5,3.6,3.7版本得均试过,虽然显示安装成功,但是导入的时候就时会报错,这个时候参考了https://www.pythonheidong.com/blog/article/233544/这个大佬的博客,然后去下载了一个依赖查询器(要的可以留言哈,当然也可以根据博客中提到的自行下载)。利用这个依赖查询,发现自己缺少VCRUNTIME140_1.dll这个模块,然后我又去https://cn.dll-files.com/download/770184b0a

2020-08-27 09:25:53 3950 4

原创 OPEN3D 可视化使用

一、自建随机点并显示import open3dimport numpy as nppcd = open3d.geometry.PointCloud() # 首先建立一个pcd类型的数据(这是open3d中的数据形式)np_points = np.random.rand(100, 3) # 随机生成点云# 将点云转换成open3d中的数据形式并用pcd来保存,以方便用open3d处理pcd.points = open3d.utility.Vector3dVector(np_points)# 将

2020-06-25 16:59:26 7026 12

转载 conda 配置环境的方法

主要是参考本篇博主的文章,留作以后学习参考,如果有侵权,立马删除https://blog.csdn.net/SARACH_WONG/article/details/89328307#_9

2020-06-10 21:19:33 4473

原创 PointNet++自我总结

PointNet++主要解决了2个问题:一是PointNet点与点之间的局部特征丢失的问题;二是对于点云密度不均匀导致的对于部分点云稀疏处的特征无法准确提取。一、解决局部特征丢失的问题作者主要是采用了对整个点云以一定的邻域约束关系划分为n个球形邻域,每个球形邻域包含k个点,并对这每个球形邻域单独使用PointNet提取特征,将每个球形邻域聚类为一个特征点,再对这n个球形邻域形成的特征点再次重复上述步骤,提取更为精细的特征。这样就保全了点与点之间的局部信息。但这样会面临的问题就是,对于点云稀疏部分区域,如

2020-06-05 08:54:21 723 3

原创 PointNet自我总结

一、网络的总体架构神经网络的本质是一个可以变化的函数(本文的函数如下图所示)所有的训练就是为了调整网络中的权值去使它逼近一个能够处理当前任务的函数,由于点云具有无序性(是一堆空间点的集合,无法保证每次输入网络时点的顺序都是相同的,这就会可能出现,同一个物体的点云,多次输入网络后所提取的特征不同,也就无法实现与本来的标签进行匹配),处理点云的这个神经网络(函数)必须具有对称性(也就是输入的顺序,不影响输出结果,eg,加法,乘法就是对称的)。本文引入的是MaxPooling,但若直接对低维度的特征进行池化操

2020-06-05 08:31:13 400

用于xception、ucf、effort等深度鉴伪装算法的数据预处理工具包

内包含三个脚本:pick_txt和pick_data2.0用于从训练集合中划分验证集;write2csv用于将测试集写入csv文件,便于推理运算。

2025-07-29

Xception、effort、ucf、sbi深度鉴伪专用测试数据集

该数据集包含2万张用于训练深度鉴伪算法的jpg图片,标签为0、1。经过精简,将原60万张数据缩减为2万张,方便大家用于本地学习、测试。

2025-07-28

yolov8m+MAR20数据集训练权重

告别漫长训练,即刻拥有顶尖检测能力! 我们倾力为您献上在权威MAR20数据集上精炼300轮次的YOLOv8m模型权重 (best.pt & last.pt)。 选择它,您不仅获得了一个文件,更获得了: 宝贵的时间成本节约 - 把精力专注在业务创新和优化上。 显著的经济成本降低 - 省去高昂的GPU训练费用。 项目成功的强力保障 - 基于高精度模型的可靠起点,平均精度达到了99.1%。 快速验证想法的能力 - 立即测试、演示、部署您的检测应用。

2025-06-13

基于opencv的人脸识别计数算法,通过对照片、视频流的识别,瞬间输出画面中的人脸数量,完成数量校验

本内容通过opencv搭建了具备离线照片和实时视频流的人脸计数算法,每一步的操作都进行了详细讲解,代码也经过反复调试,确保到手后便能够直接使用,特别适合新手学习、学生交课堂作业和需要项目实操的人员。通过对opencv的实际操作,可让您增加对于opencv视频流获取、分类器使用、图像格式转换、检测结果绘制、检测结果显示、交互按钮设计等基本功能的掌握。

2025-06-13

【手把手教学】基于OpenCV+Python的人脸识别签到系统

本内容通过opencv搭建了具备人脸录入、模型训练、识别签到功能的人脸识别签到系统,每一步的操作都进行了详细讲解,代码也经过反复调试,确保到手后便能够直接使用,特别适合新手学习、学生交课堂作业和需要项目实战练习的学习者,本资源提供售后,可在线指导直至运行成功。

2025-06-12

YOLOv5l+visdrone2019数据集训练权重

秒级部署,工业级精度!visdrone2019数据集炼就的YOLOv5l黄金权重重磅发布! 告别漫长训练,即刻拥有顶尖检测能力! 我们倾力为您献上在权威MAR20数据集上精炼300轮次的YOLOv5ml模型权重 (best.pt & last.pt)。这份成果来之不易: 省时即战力:下载即用,立竿见影! 无需耗费数日甚至数周的训练时间和高昂的GPU成本。数分钟内即可将顶级模型集成到您的系统中,项目进度飞跃式前进! 资源解放者:零训练门槛,普惠开发者! 无论您是算力有限的个人开发者、初创团队,还是教学研究者,这份现成的黄金权重都能瞬间弥补资源短板。无需昂贵硬件投入,即可直接进行高性能推理,让创意和业务快速落地!

2025-05-30

yolov5+MAR20数据集训练权重

告别漫长训练,即刻拥有顶尖检测能力! 我们倾力为您献上在权威MAR20数据集上精炼300轮次的YOLOv5m模型权重 (best.pt & last.pt)。 选择它,您不仅获得了一个文件,更获得了: 宝贵的时间成本节约 - 把精力专注在业务创新和优化上。 显著的经济成本降低 - 省去高昂的GPU训练费用。 项目成功的强力保障 - 基于高精度模型的可靠起点,平均精度达到了99.1%。 快速验证想法的能力 - 立即测试、演示、部署您的检测应用。

2025-05-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除