【Python】 pycharm+conda配置虚拟环境

文章链接:
https://blog.csdn.net/bkirito/article/details/132026604

最近开启了一个新的课题,其中需要应用到一个新的代码环境,所以写下这篇文章记录配置环境的过程来巩固技能,以及分享给大家,本文主要内容:
(1)使用pycharm创建新的项目环境并使用conda进行配置
(2)使用pycharm引用已有的conda虚拟环境

一.使用pycharm创建虚拟环境

首先,打开点击pycharm左上方的“文件”中的“新建项目”。

在这里插入图片描述

1.新建项目选项填写

第一行的位置一栏填写索要创建项目的目标文件夹位置。
使用此工具新建环境处选择"Conda”
第二个位置是指存储新建的虚拟环境中的资源包的位置。
python副本根据项目需求进行选择。
conda可执行文件是在自己的anaconda文件夹下的"Scripts"文件夹下的conda.exe。
可根据自身需求选择是否选择用于所有项目。

在创建之后可能会出现报错,无视即可,直接进入下一步操作。
文件中找到设置,在设置中找到并点击python解释器,点击图中的图标。

在这里插入图片描述
点击后选择“展示全部”,在python解释器选择界面点击下图中加号,并进入添加python解释器界面。

在这里插入图片描述

点击“新环境”,在conda可执行文件中选择自己的anaconda文件夹下Scripts文件下的conda.exe文件,并点击“确定”。

在这里插入图片描述
之后软件会自动安装相应解释器,虚拟环境创建成功。

在这里插入图片描述

2.安装所需资源包

我个人比较习惯在conda prompt 中进行资源包的安装(在安装前一定要确认所安装资源包与python解释器版本是否对应,不然后续会很麻烦)。
打开桌面菜单,点击anaconda中的conda prompt。
使用conda指令查看目前所拥有的的conda环境(对应anaconda文件夹下的env文件夹)

conda env list	

在这里插入图片描述
激活你所创建的虚拟环境

conda activate tf1.15

此时便进入到了相应的虚拟环境中,会在下图位置有所提示:

在这里插入图片描述

此时便可以通过conda命令添加相应所需要的资源包,比如pandas,例:

conda install pandas

查看当前环境中的资源包:

conda list

在这里插入图片描述

此时则已经安装成功,诸如此类可以安装其他的资源包。

3.可能存在的问题及应对

若你的pycharm因为某些原因无法创建python解释器,则可以通过conda prompt进行创建,并在pycharm中引用此环境,此处可参考后续部分二的内容,

二、pycharm使用已有的conda环境

相较于使用pycharm创建虚拟环境,其实使用conda创建更为简单,在创建后只需要在pycharm中添加该虚拟环境即可。

1.创建虚拟环境

首先,打开conda prompt,并创建新的虚拟环境,设置环境名称以及相应python版本。

conda create -n env_name python=3.6.0

创建之后可以通过conda命令查看并激活环境,后续添加资源包的流程与部分一中的相同。

2.在pycharm中使用虚拟环境

步骤同部分一中的一致,依次打开

文件
设置
python解释器
图标
全部显示
加号
conda环境
在这里插入图片描述

在这里插入图片描述

点击现有环境,在解释器中选择anaconda文件夹下的envs文件夹下的刚建好的虚拟环境中的python.exe文件。
然后conda可执行文件中选择anaconda文件夹下的"Scripts"文件夹下的conda.exe,点击确认。

在这里插入图片描述
此时就会多出选定的解释器,可在软件包中查看当前环境中的资源包,并点击应用,等待一段时间后即可完成配置。

在这里插入图片描述

在这里插入图片描述

可以从界面右下角看到已经使用了刚刚创建的虚拟环境下的解释器,此时可以运行一下main函数测试是否配置完成。

在这里插入图片描述

输出正常,则配置完成。

### 如何在 PyCharm 中创建和配置虚拟环境 #### 创建新的 Python 项目并选择解释器 当启动 PyCharm 并创建新项目时,会弹出对话框提示设置项目的名称与位置。在这个界面里有一个用于指定Python 解释器的部分,在这里可以选择已有的虚拟环境或是让 IDE 自动生成一个新的。 如果决定由 PyCharm 自动建立,则只需勾选“Create virtual environment”选项,并可自定义该环境的名字及其存放目录[^3]。 ```python # 这是一个示意性的代码片段,实际操作是在图形界面上完成的。 project_interpreter_path = "path/to/new/virtual/environment" ``` #### 手动创建外部虚拟环境并通过 PyCharm 配置 对于希望手动控制整个过程的情况,可以先通过命令行工具来构建所需的隔离空间: - 对于基于 Conda 的管理系统而言,可以通过如下指令实现虚拟环境的新建、激活以及必要的包安装工作: ```bash conda create --name myenv python=3.8 conda activate myenv pip install -r path_to_requirements_file/requirements.txt ``` 上述命令序列完成了名为 `myenv` 的全新虚拟环境搭建,并指定了 Python 版本为 3.8;随后启用了这个刚被制造出来的独立运行域;最后依据给定的需求文档批量装载依赖库项[^1]。 - 或者采用标准库中的 venv 模块来进行相同的操作: ```bash E:\pyy\python.exe -m venv E:\pyvene\4a ``` 这条语句利用特定版本的 Python 可执行文件作为基础,在目标路径下生成了一个全新的虚拟环境实例[^2]。 一旦有了现成可用的虚拟环境之后,回到 PyCharm 内部,依次点击菜单栏上的【File】-> 【Settings...】(Windows/Linux) 或者 【PyCharm】 -> 【Preferences...】 (macOS),找到 Project 下拉列表里的 Interpreter 设置页面,点击齿轮图标旁边的加号按钮 (+), 接着选取 “Add Local”,浏览至之前所创设的那个虚拟环境中对应的 `python.exe` 文件所在的位置即可成功关联二者之间的联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值