YARN的Job任务提交流程和任务调度

本文介绍了YARN在Hadoop中的角色,详细解析了job任务从客户端提交到ResourceManager,再到NodeManager的执行流程,包括AppMaster的启动、资源申请、container的执行等步骤。同时,讨论了三种任务调度算法:FIFO Scheduler、Capacity Scheduler和Fair Scheduler,分析了它们的特点和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Hadoop体系中,YARN的主要作用是资源管理和任务调度,其主要组合包括ResourceManager和NodeManager,下面来聊聊它的job任务提交流程和任务调度算法。

  • job任务提交流程
    job任务的提交流程如下图:
    在这里插入图片描述
    1 客户端向ResourceManager提交任务,ResourceManager会根据权限和当前集群的负载情况执行Job任务
    2 ResourceManager就会启动ApplicationManager来启动AppMaster,一个AppMaster对应一个Job任务
    3 AppMaster启动完成后,就会向ApplicationManager注册一个AppMaster
    4 接着AppMaster会向ResourceSchedule申请所需要的资源
    5 ResourceSchedule就会以container为列表返回资源(container)封装的是cpu、内存等资源,container是执行Task的最小单位
    6 AppMaster拿到资源后,就会去对应的机器上启动container来执行job任务
    7 container启动完成后,就开始启动MapTask和ReduceTask来执行任务
    8 container定期向AppMaster汇报执行情况
    9 AppMaster也会定期向ApplicationManager汇报执行情况
    10 当任务执行完成后,就会把结果返回给客户端

  • 任务调度算法

    • FIFO Scheduler(First In First Out)
      这种调度算法也成为了队列调度算法,就是先来的任务先执行。但它并不适用于共享 集群。大的任务可能会占用所有集群资源,这就导致其它任务被阻塞。

    • Capacity Scheduler

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值