Spark集群架构

本文介绍了Spark的集群架构,包括Spark在YARN和Standalone模式下的运行环境。在Spark架构中,Driver运行SparkContext,Executor执行任务,而Worker管理Executor。在Spark on YARN模式下,Application Master负责协调资源,而在Standalone模式下,Master和Slave构成主从结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Spark架构

Spark可以运行在YARN上也可以运行Mesos上,无论运行在哪个集群管理架构上,Spark都是以主从架构运行程序。主节点会运行Driver进程,该进程会调用Spark程序的main方法,启动SparkContext;Executor就是从节点的进程,该进程负责执行Driver分发的具体的task;Work负责启动和管理这些Exector,一个Worker可以有多个Exector。它们之间的关系如下图:
在这里插入图片描述

Spark执行任务流程

运行一个Spark可以分为如下步骤

  1. 启动Driver,创建SparkContext
  2. Client提交程序给Driver,Driver向Cluster Manager(这里的Cluster Manager在不同的集群资源管理器上,对象也不一样)申请集群资源
  3. 资源申请完毕后,Driver就会告诉Worker启动对应数量的Executor
  4. Driver将程序转化为Task,然后分发给Executor执行

Spark运行环境

Spark on YARN

在YARN集群模式下,client向ResourceManager提交任务后,就会启动一个Application Master,Application里面运行Driver,然后再通过Application Master在NodeManager启动Container来运行Executor。如下图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值