
数据分析就业班(上海)
pandas,numpy
Hubert_xx
白癜风就是让你白!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
day8 足球运动员分析
足球运动员分析背景信息当前,足球运动是最受欢迎的运动之一(也可以说没有之一)。任务说明我们的任务,就是在众多的足球运动员中,发现统计一些关于足球运动员的共性,或某些潜在的规律。数据集描述数据集包含的是2017年所有活跃的足球运动员。Name 姓名Nationality 国籍National_Position 国家队位置National_Kit 国家队号码Club 所在俱乐部Club_Position 所在俱乐部位置Club_Kit 俱乐部号码Club_Joining 加入俱乐部原创 2020-08-09 18:33:51 · 696 阅读 · 0 评论 -
day7 数据可视化
matplotlibmatplotlib是用于Python的绘图库,提供各种常用图形的绘制。例如,条形图,柱形图,线图,散点图等。安装pip install matplotlib导入根据惯例,使用如下的方式导入:import matplotlib as mplimport matplotlib.pyplot as pltimport matplotlib as mplimport matplotlib.pyplot as pltimport numpy as np图形绘制绘制线图原创 2020-08-08 13:43:05 · 253 阅读 · 0 评论 -
第三章 内建数据结构(列表,字典,元组,集合)、函数及文件
1、元组元组是一个固定的长度、不可变的对象序列。创建元组的最简单的方法就是用逗号分隔序列值。你可以使用tuple函数将任意序列或迭代器转换为元组虽然元组中存储的对象其自身是可变的,但是元组一旦创建,其各个位置上的对象是无法修改的。如果元组中的某一对象是可变的,可以在内部进行修改元组的拆包2、列表增加或移除数据append:将元素添加到列表的尾部insert:将元素添加到指定的位置pop:将特定位置元素删除并返回该元素remove:定位到第一个满足要求的元素并移除他连原创 2020-07-30 23:01:34 · 320 阅读 · 0 评论 -
第二章 python语言基础、ipython及jupyter notebook
matplotlib绘图isinstance函数用来检查一个对象是否是特定的类型二元运算符和比较运算符检查两个引用是不是指向同一个对象,用is 和 is not关键字is 和 == 时不同的,==只看是不是一样,不看是不是同一个。可变和不可变列表,字典,数组都是可变的;元组、字符串是不可变的。相互转换反斜杠是用来指明特殊符号的。...原创 2020-07-29 23:21:42 · 173 阅读 · 0 评论 -
第一章 准备工作及基本介绍
学习《利用python进行数据分析》书中代码土豪链接免费连接第一章 准备工作原创 2020-07-29 16:26:16 · 252 阅读 · 0 评论 -
day6 多层索引与分组
MultiIndexMultiIndex,即具有多个层次的索引,有些类似于根据索引进行分组的形式。通过多层次索引,我们就可以使用高层次的索引,来操作整个索引组的数据。1、创建方式第一种我们在创建Series或DataFrame时,可以通过给index(columns)参数传递多维数组,进而构建多维索引。【数组中每个维度对应位置的元素,组成每个索引值】多维索引的也可以设置名称(names属性),属性的值为一维数组,元素的个数需要与索引的层数相同(每层索引都需要具有一个名称)。第二种我们可以通过M原创 2020-08-05 23:54:13 · 629 阅读 · 0 评论 -
day5 数据处理
1、数据加载首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作。pandas提供了非常多的读取数据的函数,分别应用在各种数据源环境中,我们常用的函数为:read_csvread_tableread_sql说明:read_csv与read_table默认使用的分隔符不同。1.1 加载数据集(csv),返回DataFrame类型。可以指定sep或delimiter参数,控制数据之间的分隔符号**。read_csv方法**,默认为逗号(,)read_csv与read_table功原创 2020-08-04 23:06:09 · 281 阅读 · 0 评论 -
day4 Pandas:数据操作与分析
PandasPandas库基于Numpy库,提供了很多用于数据操作与分析的功能。1、安装与使用安装:pip install pandas根据惯例,我们使用如下的方式引入pandas:import pandas as pd2、两个常用数据类型pandas提供两个常用的数据类型:Series (一维的)DataFrame(多维的,可看做多个series组成)import pandas as pdimport numpy as np3、Series类型Series类型类似于Num原创 2020-08-03 18:22:13 · 298 阅读 · 0 评论 -
day3 Numpy应用案例(1)
Numpy应用案例注:使用numpy库来对图像进行处理。这里我们使用matplotlib.pyplot的相关方法来辅助。对于彩色图像,可以认为是由RGB三个通道构成的。每个最低维就是一个通道。分别提取R(红色),G(绿色),B(蓝色)三个通道,并显示单通道的图像。1、图像读取与显示plt.imread:读取图像,返回图像的数组。plt.imshow:显示图像。plt.imsave:保存图像。说明:imread方法默认只能处理png格式的图像,如果需要处理其他格式的图像,需要安装pill原创 2020-08-02 20:34:24 · 1145 阅读 · 0 评论 -
day2 Numpy:数组与向量化计算
NumpyNumpy(Numerical Python的简称),提供了大量关于科学计算的相关功能,例如:线性变换,数据统计,随机数生成等。其提供最核心的类型就是多维数组类型(ndarray)使用方法安装:pip install numpy导入:import numpy as np版本:np.__version__数组的创建常用方式:arrayarange 注意不是arrangeones/ones_likezeros/zeros_likeempty/empty_likefu原创 2020-07-06 22:42:22 · 783 阅读 · 0 评论 -
day1 基础概念
数据科学与计算相关库学习 numpy matplotlib pandas相关开发工具pycharmAnocondaipythonjupyter notebookSpyder指定jupter保存路径虚拟环境默认是base虚拟环境,安装新的会在envs文件夹里创建:打开Anoconda中的Anoconda prompt,然后输入conda create -n 虚拟环境名称 python=版本号 最后属于“Y”(创建一个基本的虚拟环境,包括常用的一些库)删除:输入原创 2020-07-03 22:53:58 · 282 阅读 · 0 评论