【完整源码+数据集+部署教程】建筑物实例分割系统源码和数据集:改进yolo11-ContextGuidedDown

背景意义

研究背景与意义

随着城市化进程的加快,建筑物的数量和复杂性不断增加,建筑物实例分割技术在城市规划、建筑管理及安全监控等领域的重要性日益凸显。建筑物实例分割不仅能够精确识别和分离不同建筑物的轮廓,还能为后续的分析和决策提供重要的数据支持。传统的建筑物识别方法往往依赖于手工特征提取,效率低下且准确性不足,因此,基于深度学习的实例分割技术逐渐成为研究的热点。

YOLO(You Only Look Once)系列模型因其高效的实时检测能力和较好的准确性而受到广泛关注。YOLOv11作为该系列的最新版本,结合了更为先进的网络结构和训练策略,能够在保持高精度的同时,显著提高检测速度。通过对YOLOv11进行改进,构建一个专门针对建筑物实例分割的系统,将有助于提升建筑物识别的精度和效率。

本研究将利用DFC23数据集,该数据集包含1800张建筑物图像,涵盖了建筑物实例分割所需的基本信息。虽然该数据集的类别数量较少,仅有一个类别,但其图像的多样性和真实场景的代表性为模型的训练提供了良好的基础。通过对该数据集的深入分析和处理,可以有效地提升模型在实际应用中的表现。

综上所述,基于改进YOLOv11的建筑物实例分割系统的研究,不仅具有重要的理论意义,还将为实际应用提供强有力的技术支持。通过该系统的构建与优化,将为城市管理、建筑安全监控等领域的智能化发展奠定基础,推动相关技术的进步与应用。

图片效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集信息

本项目数据集信息介绍

本项目旨在改进YOLOv11的建筑物实例分割系统,所使用的数据集以“DFC23”为主题,专注于建筑物的检测与分割。该数据集包含丰富的建筑物图像,涵盖了多种不同的建筑风格和结构,提供了一个理想的训练基础,以提高模型在实际应用中的准确性和鲁棒性。数据集的设计考虑到了建筑物在不同环境和光照条件下的表现,确保模型能够在多样化的场景中进行有效的实例分割。

在数据集的类别设置上,DFC23数据集包含1个类别,类别名称为“0”,这一设计简化了模型的训练过程,使其能够专注于建筑物的特征提取与分割。尽管类别数量较少,但通过精心挑选和标注的图像,数据集依然能够提供足够的多样性,以帮助模型学习到建筑物的不同形态、纹理和边界特征。每幅图像都经过严格的标注,确保分割的准确性,为模型提供了高质量的训练样本。

为了进一步提升模型的性能,数据集还包含了不同分辨率和视角的图像,涵盖了城市建筑、乡村建筑以及特殊结构等多种类型。这种多样性不仅增强了模型的泛化能力,还使其能够适应不同的应用场景,如城市规划、建筑监测和智能交通系统等。通过对DFC23数据集的深入挖掘与分析,本项目希望能够推动建筑物实例分割技术的发展,为相关领域的研究和应用提供有力支持。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

核心代码

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn as nn
from typing import List
from torch import Tensor

class Partial_conv3(nn.Module):
“”"
部分卷积层,用于处理输入特征图的不同部分。
“”"
def init(self, dim, n_div, forward):
super().init()
self.dim_conv3 = dim // n_div # 计算部分卷积的维度
self.dim_untouched = dim - self.dim_conv3 # 计算未处理部分的维度
self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) # 定义卷积层

    # 根据前向传播方式选择相应的前向传播函数
    if forward == 'slicing':
        self.forward = self.forward_slicing
    elif forward == 'split_cat':
        self.forward = self.forward_split_cat
    else:
        raise NotImplementedError

def forward_slicing(self, x: Tensor) -> Tensor:
    # 仅用于推理阶段
    x = x.clone()  # 克隆输入以保持原始输入不变
    x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])  # 处理部分特征图
    return x

def forward_split_cat(self, x: Tensor) -> Tensor:
    # 用于训练和推理阶段
    x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)  # 将输入分为两部分
    x1 = self.partial_conv3(x1)  # 处理第一部分
    x = torch.cat((x1, x2), 1)  # 将处理后的部分与未处理部分拼接
    return x

class MLPBlock(nn.Module):
“”"
多层感知机块,包含卷积层、归一化层和激活函数。
“”"
def init(self, dim, n_div, mlp_ratio, drop_path, layer_scale_init_value, act_layer, norm_layer, pconv_fw_type):
super().init()
self.dim = dim
self.mlp_ratio = mlp_ratio
self.drop_path = nn.Identity() if drop_path <= 0 else DropPath(drop_path) # 根据drop_path的值选择是否使用DropPath
self.n_div = n_div

    mlp_hidden_dim = int(dim * mlp_ratio)  # 计算隐藏层维度

    # 定义多层感知机的结构
    mlp_layer: List[nn.Module] = [
        nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
        norm_layer(mlp_hidden_dim),
        act_layer(),
        nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
    ]

    self.mlp = nn.Sequential(*mlp_layer)  # 将层组合成一个顺序容器

    # 初始化空间混合层
    self.spatial_mixing = Partial_conv3(dim, n_div, pconv_fw_type)

def forward(self, x: Tensor) -> Tensor:
    shortcut = x  # 保存输入以便于残差连接
    x = self.spatial_mixing(x)  # 进行空间混合
    x = shortcut + self.drop_path(self.mlp(x))  # 残差连接
    return x

class FasterNet(nn.Module):
“”"
FasterNet模型的主类,包含多个阶段和特征提取模块。
“”"
def init(self, in_chans=3, num_classes=1000, embed_dim=96, depths=(1, 2, 8, 2), mlp_ratio=2., n_div=4,
patch_size=4, patch_stride=4, patch_size2=2, patch_stride2=2, patch_norm=True, drop_path_rate=0.1,
layer_scale_init_value=0, norm_layer=‘BN’, act_layer=‘RELU’, pconv_fw_type=‘split_cat’):
super().init()

    # 选择归一化层和激活函数
    norm_layer = nn.BatchNorm2d if norm_layer == 'BN' else NotImplementedError
    act_layer = partial(nn.ReLU, inplace=True) if act_layer == 'RELU' else NotImplementedError

    self.num_stages = len(depths)  # 模型阶段数
    self.embed_dim = embed_dim  # 嵌入维度
    self.depths = depths  # 每个阶段的深度

    # 将输入图像分割为不重叠的补丁
    self.patch_embed = PatchEmbed(patch_size=patch_size, patch_stride=patch_stride, in_chans=in_chans,
                                  embed_dim=embed_dim, norm_layer=norm_layer if patch_norm else None)

    # 随机深度衰减规则
    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

    # 构建各个阶段
    stages_list = []
    for i_stage in range(self.num_stages):
        stage = BasicStage(dim=int(embed_dim * 2 ** i_stage), n_div=n_div, depth=depths[i_stage],
                           mlp_ratio=mlp_ratio, drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
                           layer_scale_init_value=layer_scale_init_value, norm_layer=norm_layer,
                           act_layer=act_layer, pconv_fw_type=pconv_fw_type)
        stages_list.append(stage)

        # 添加补丁合并层
        if i_stage < self.num_stages - 1:
            stages_list.append(PatchMerging(patch_size2=patch_size2, patch_stride2=patch_stride2,
                                             dim=int(embed_dim * 2 ** i_stage), norm_layer=norm_layer))

    self.stages = nn.Sequential(*stages_list)  # 将所有阶段组合成一个顺序容器

def forward(self, x: Tensor) -> Tensor:
    # 输出四个阶段的特征用于密集预测
    x = self.patch_embed(x)  # 嵌入补丁
    outs = []
    for idx, stage in enumerate(self.stages):
        x = stage(x)  # 通过每个阶段
        if idx in self.out_indices:  # 如果当前阶段在输出索引中
            norm_layer = getattr(self, f'norm{idx}')  # 获取归一化层
            x_out = norm_layer(x)  # 应用归一化
            outs.append(x_out)  # 保存输出
    return outs

代码说明
Partial_conv3: 这个类实现了部分卷积,能够根据输入的不同部分进行处理,适用于推理和训练阶段。
MLPBlock: 这个类实现了多层感知机块,包含卷积、归一化和激活函数,支持残差连接。
FasterNet: 这是整个模型的核心类,负责构建网络的不同阶段,包括补丁嵌入和补丁合并。模型的前向传播过程将输入图像分割为补丁,并通过多个阶段进行特征提取。
通过这些核心部分,FasterNet模型能够有效地处理输入数据并提取特征,适用于各种计算机视觉任务。

这个程序文件 fasternet.py 实现了一个名为 FasterNet 的深度学习模型,主要用于图像处理任务。文件中包含了多个类和函数,构成了整个模型的结构和功能。

首先,程序导入了一些必要的库,包括 PyTorch、YAML 和一些深度学习相关的模块。接着,定义了多个类,每个类都有其特定的功能。

Partial_conv3 类实现了一个部分卷积层,可以根据不同的前向传播方式(切片或拼接)来处理输入数据。这个类在模型的前向传播中用于对输入特征图进行局部卷积操作。

MLPBlock 类定义了一个多层感知机(MLP)模块,包含了两个卷积层和一个激活函数。这个模块在前向传播中使用了残差连接,并且可以选择性地应用层缩放。

BasicStage 类则是由多个 MLPBlock 组成的一个阶段,负责处理输入数据并生成特征输出。

PatchEmbed 类用于将输入图像分割成不重叠的补丁,并通过卷积层进行嵌入。PatchMerging 类则用于将补丁合并,以减少特征图的尺寸。

FasterNet 类是整个模型的核心,包含了多个阶段的构建。它根据输入的参数配置(如嵌入维度、深度等)来初始化各个模块,并在前向传播中依次通过这些模块处理输入数据。该类还实现了输出多个阶段的特征,以便进行密集预测。

文件中还定义了一些辅助函数,如 update_weight 用于更新模型权重,fasternet_t0、fasternet_t1 等函数用于加载不同配置的 FasterNet 模型。这些函数从 YAML 配置文件中读取模型参数,并根据需要加载预训练权重。

最后,在 main 块中,程序实例化了一个 FasterNet 模型,并对输入进行测试,输出了各个阶段的特征图的尺寸。

总体来说,这个程序实现了一个灵活且可配置的深度学习模型,适用于各种图像处理任务,并提供了加载和更新模型权重的功能。

10.4 dyhead_prune.py
以下是经过简化并添加详细中文注释的核心代码部分:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DyReLU(nn.Module):
“”"
动态ReLU激活函数模块,能够根据输入动态调整激活值。
“”"
def init(self, inp, reduction=4, lambda_a=1.0, use_bias=True):
super(DyReLU, self).init()
self.oup = inp # 输出通道数
self.lambda_a = lambda_a * 2 # 动态调整参数
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 自适应平均池化层

    # 确定压缩比例
    squeeze = inp // reduction
    self.fc = nn.Sequential(
        nn.Linear(inp, squeeze),  # 全连接层,输入到压缩
        nn.ReLU(inplace=True),  # ReLU激活
        nn.Linear(squeeze, self.oup * 2),  # 输出到双倍的输出通道数
        h_sigmoid()  # 使用h_sigmoid激活
    )

def forward(self, x):
    """
    前向传播函数
    :param x: 输入张量
    :return: 动态调整后的输出
    """
    b, c, h, w = x.size()  # 获取输入的批量大小、通道数、高度和宽度
    y = self.avg_pool(x).view(b, c)  # 对输入进行自适应平均池化
    y = self.fc(y).view(b, self.oup * 2, 1, 1)  # 通过全连接层处理并调整形状

    # 分割输出以获得动态参数
    a1, b1 = torch.split(y, self.oup, dim=1)
    a1 = (a1 - 0.5) * self.lambda_a + 1.0  # 动态调整参数
    out = x * a1 + b1  # 计算输出

    return out  # 返回动态调整后的输出

class DyDCNv2(nn.Module):
“”"
带有归一化层的Modulated Deformable Convolution模块。
“”"
def init(self, in_channels, out_channels, stride=1, norm_cfg=dict(type=‘GN’, num_groups=16)):
super().init()
self.conv = ModulatedDeformConv2d(in_channels, out_channels, 3, stride=stride, padding=1) # 可调变形卷积
self.norm = build_norm_layer(norm_cfg, out_channels)[1] if norm_cfg else None # 归一化层

def forward(self, x, offset, mask):
    """
    前向传播函数
    :param x: 输入张量
    :param offset: 偏移量
    :param mask: 掩码
    :return: 经过卷积和归一化处理的输出
    """
    x = self.conv(x.contiguous(), offset, mask)  # 进行可调变形卷积
    if self.norm:
        x = self.norm(x)  # 如果有归一化层,则进行归一化
    return x  # 返回输出

class DyHeadBlock_Prune(nn.Module):
“”"
DyHead模块,包含三种类型的注意力机制。
“”"
def init(self, in_channels, norm_type=‘GN’):
super().init()
self.spatial_conv_high = DyDCNv2(in_channels, in_channels) # 高层空间卷积
self.spatial_conv_mid = DyDCNv2(in_channels, in_channels) # 中层空间卷积
self.spatial_conv_low = DyDCNv2(in_channels, in_channels, stride=2) # 低层空间卷积
self.spatial_conv_offset = nn.Conv2d(in_channels, 27, 3, padding=1) # 偏移和掩码的卷积层
self.task_attn_module = DyReLU(in_channels) # 任务注意力模块

def forward(self, x, level):
    """
    前向传播函数
    :param x: 输入特征图
    :param level: 当前特征图的层级
    :return: 经过注意力机制处理后的输出
    """
    offset_and_mask = self.spatial_conv_offset(x[level])  # 计算偏移和掩码
    offset = offset_and_mask[:, :18, :, :]  # 获取偏移量
    mask = offset_and_mask[:, 18:, :, :].sigmoid()  # 获取掩码并应用sigmoid

    mid_feat = self.spatial_conv_mid(x[level], offset, mask)  # 中层特征卷积
    sum_feat = mid_feat * self.scale_attn_module(mid_feat)  # 加权中层特征

    # 处理低层和高层特征
    if level > 0:
        low_feat = self.spatial_conv_low(x[level - 1], offset, mask)  # 低层特征卷积
        sum_feat += low_feat * self.scale_attn_module(low_feat)  # 加权低层特征
    if level < len(x) - 1:
        high_feat = F.interpolate(self.spatial_conv_high(x[level + 1], offset, mask), size=x[level].shape[-2:], mode='bilinear', align_corners=True)  # 高层特征卷积并上采样
        sum_feat += high_feat * self.scale_attn_module(high_feat)  # 加权高层特征

    return self.task_attn_module(sum_feat)  # 返回经过任务注意力模块处理后的输出

代码说明:
DyReLU: 这是一个动态激活函数模块,能够根据输入的特征动态调整激活值。它使用自适应平均池化和全连接层来生成动态参数。

DyDCNv2: 这是一个带有归一化层的可调变形卷积模块,使用偏移和掩码来调整卷积操作。它的前向传播函数接受输入特征、偏移量和掩码,并返回经过卷积和归一化处理的输出。

DyHeadBlock_Prune: 这是一个包含多种注意力机制的模块,使用不同层次的特征进行卷积和加权。它的前向传播函数计算偏移和掩码,并结合不同层次的特征进行加权处理,最终返回经过任务注意力模块处理后的输出。

这个程序文件 dyhead_prune.py 是一个基于 PyTorch 的深度学习模块,主要实现了动态头(Dynamic Head)的一些组件,特别是与动态卷积和注意力机制相关的部分。代码中包含了多个自定义的神经网络层和模块,下面是对代码的详细讲解。

首先,文件导入了必要的库,包括 PyTorch 的核心库和一些其他模块,如 mmcv 和 mmengine,这些库提供了构建神经网络所需的功能。接着,定义了一个 _make_divisible 函数,用于确保某个值可以被指定的除数整除,并且在必要时对其进行调整,以满足一定的最小值要求。

接下来,定义了几个激活函数类,包括 swish、h_swish 和 h_sigmoid。这些类继承自 nn.Module,并实现了各自的前向传播方法。swish 是一种新型激活函数,h_swish 和 h_sigmoid 则是与 ReLU 相关的变体,具有不同的非线性特性。

DyReLU 类是一个动态激活函数模块,它的设计允许根据输入的特征动态调整激活值。构造函数中包含了多个参数,如输入通道数、压缩比、是否使用偏置等。前向传播方法中,首先通过全局平均池化获取输入特征的统计信息,然后通过全连接层计算出动态的激活参数,最后根据这些参数对输入进行加权和偏置调整。

DyDCNv2 类实现了带有归一化层的可调变形卷积。该模块的构造函数接受输入和输出通道数、步幅以及归一化配置。前向传播方法中,首先执行变形卷积操作,然后如果需要的话,应用归一化层。

DyHeadBlock_Prune 类是动态头模块的一个实现,包含了三种类型的注意力机制。构造函数中定义了多个卷积层和注意力模块,包括空间卷积和任务注意力模块。初始化权重的方法 _init_weights 用于对卷积层的权重进行初始化。前向传播方法中,首先计算偏移量和掩码,然后通过不同层次的特征进行卷积操作,并结合注意力机制进行加权,最终输出经过任务注意力模块处理的特征。

整体来看,这个文件实现了一个复杂的动态卷积和注意力机制的组合,适用于需要多层次特征融合和动态调整的深度学习任务,如目标检测和图像分割等。通过这些模块的组合,可以有效提升模型在处理复杂任务时的表现。

源码文件

在这里插入图片描述

源码获取

欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的佩奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值