背景意义
研究背景与意义
随着城市化进程的加快,交通基础设施的建设与维护显得尤为重要。道路作为城市交通的主要载体,其表面质量直接影响到交通安全与行车舒适度。然而,传统的道路表面缺陷检测方法往往依赖人工巡检,效率低下且容易受到人为因素的影响,难以实现实时监测与评估。因此,开发一种高效、准确的自动化检测系统显得尤为迫切。
近年来,深度学习技术的迅猛发展为计算机视觉领域带来了新的机遇,尤其是在物体检测与分割任务中表现出色。YOLO(You Only Look Once)系列模型因其高效的实时检测能力而受到广泛关注。YOLOv11作为该系列的最新版本,具备更强的特征提取能力和更快的推理速度,适合用于复杂场景下的道路表面缺陷检测。通过对YOLOv11的改进,结合针对道路表面缺陷的特定需求,可以显著提升检测的准确性与效率。
本研究所使用的数据集包含5400张图像,涵盖了8种不同类型的道路表面缺陷,包括“鳄鱼皮”、“角落破损”、“失效”、“纵向裂缝”、“修补”、“剥落”、“接缝”和“横向裂缝”。这些缺陷类型的多样性为模型的训练提供了丰富的样本,有助于提升模型的泛化能力。此外,数据集的标注采用了YOLOv8格式,便于与现有的深度学习框架进行无缝对接。
通过基于改进YOLOv11的道路表面缺陷检测系统的研究,不仅可以提高道路维护的效率,还能为城市交通管理提供科学依据,降低交通事故的发生率,保障人民的出行安全。这一研究的开展将为智能交通系统的发展贡献重要力量,具有重要的理论价值与实际应用意义。
图片效果
数据集信息
本项目数据集信息介绍
本项目旨在通过改进YOLOv11模型,提升道路表面缺陷检测系统的性能。为此,我们构建了一个专门的数据集,专注于识别和分类不同类型的道路表面缺陷。该数据集包含512张高质量的图像,涵盖了多种常见的道路缺陷类型,确保了模型在实际应用中的有效性和准确性。数据集中包含8个主要类别,分别为:Alligator(鳄鱼裂纹)、CornerBreak(角落破损)、Failure(失效)、Longitudinal(纵向裂缝)、Patching(修补)、Spalling(剥落)、Tjoint(接缝缺陷)和Transverse(横向裂缝)。这些类别代表了道路表面在使用过程中可能出现的多种损坏情况,涵盖了从轻微的裂纹到严重的结构性破坏,具有广泛的应用价值。
在数据集的构建过程中,我们采用了多种拍摄角度和光照条件,以确保模型能够在不同环境下进行有效的缺陷检测。每个类别的样本数量经过精心设计,以保证数据集的均衡性,避免模型在训练过程中对某一特定类别的偏倚。此外,数据集中的图像经过标注,确保每个缺陷的边界框准确无误,便于YOLOv11模型进行训练和验证。
通过使用该数据集,我们期望能够训练出一个更加智能和高效的道路表面缺陷检测系统,不仅能够提高检测的准确性,还能缩短检测时间,为道路维护和管理提供有力支持。随着城市化进程的加快,道路维护的重要性日益凸显,因此,本项目的数据集将为相关领域的研究和应用提供坚实的基础。
核心代码
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
from functools import partial
从其他模块导入必要的类
from .prepbn import RepBN, LinearNorm
from …modules.transformer import TransformerEncoderLayer
定义模块的公开接口
all = [‘AIFI_RepBN’]
定义线性归一化的部分函数
ln = nn.LayerNorm
linearnorm = partial(LinearNorm, norm1=ln, norm2=RepBN, step=60000)
class TransformerEncoderLayer_RepBN(TransformerEncoderLayer):
def init(self, c1, cm=2048, num_heads=8, dropout=0, act=…, normalize_before=False):
# 初始化父类的构造函数
super().init(c1, cm, num_heads, dropout, act, normalize_before)
# 使用线性归一化和RepBN进行归一化
self.norm1 = linearnorm(c1)
self.norm2 = linearnorm(c1)
class AIFI_RepBN(TransformerEncoderLayer_RepBN):
“”“定义AIFI变换器层。”“”
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
"""使用指定参数初始化AIFI实例。"""
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
def forward(self, x):
"""AIFI变换器层的前向传播。"""
c, h, w = x.shape[1:] # 获取输入张量的通道数、高度和宽度
pos_embed = self.build_2d_sincos_position_embedding(w, h, c) # 构建2D正弦余弦位置嵌入
# 将输入张量从形状[B, C, H, W]展平为[B, HxW, C]
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
# 将输出张量恢复为原始形状并返回
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
@staticmethod
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
"""构建2D正弦余弦位置嵌入。"""
assert embed_dim % 4 == 0, "嵌入维度必须是4的倍数,以便进行2D正弦余弦位置嵌入"
grid_w = torch.arange(w, dtype=torch.float32) # 创建宽度的网格
grid_h = torch.arange(h, dtype=torch.float32) # 创建高度的网格
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij") # 生成网格坐标
pos_dim = embed_dim // 4 # 计算位置维度
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim # 计算频率
omega = 1.0 / (temperature**omega) # 应用温度缩放
# 计算宽度和高度的正弦余弦嵌入
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
# 将正弦和余弦嵌入连接在一起并返回
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
代码说明:
导入模块:导入了必要的PyTorch模块和自定义模块。
归一化设置:使用LayerNorm和RepBN定义了一个归一化的部分函数。
TransformerEncoderLayer_RepBN类:继承自TransformerEncoderLayer,在构造函数中初始化了两个归一化层。
AIFI_RepBN类:定义了AIFI变换器层,重写了前向传播方法,处理输入并构建位置嵌入。
位置嵌入构建:build_2d_sincos_position_embedding方法生成2D正弦余弦位置嵌入,用于增强模型对输入位置的感知能力。
这个程序文件定义了一个基于Transformer架构的自定义层,主要是为了实现一种新的Transformer编码器层,名为AIFI_RepBN。文件中使用了PyTorch库,结合了一些自定义的正则化方法。
首先,导入了必要的库,包括PyTorch的核心模块和一些自定义模块。特别是,RepBN和LinearNorm是自定义的正则化方法,TransformerEncoderLayer是一个标准的Transformer编码器层的实现。
接下来,定义了一个名为TransformerEncoderLayer_RepBN的类,它继承自TransformerEncoderLayer。这个类的构造函数中调用了父类的构造函数,并且初始化了两个正则化层norm1和norm2,使用了之前定义的linearnorm函数,这个函数结合了LayerNorm和RepBN。
然后,定义了AIFI_RepBN类,它继承自TransformerEncoderLayer_RepBN。这个类的构造函数允许用户指定多个参数,如输入通道数、隐藏层维度、注意力头数、丢弃率、激活函数和是否在前向传播前进行归一化。构造函数中调用了父类的构造函数来初始化这些参数。
在AIFI_RepBN类中,重写了forward方法,负责实现前向传播的逻辑。首先,获取输入张量的形状,并调用build_2d_sincos_position_embedding方法生成二维的正弦余弦位置嵌入。接着,将输入张量的形状从[B, C, H, W]转换为[B, HxW, C],然后调用父类的forward方法进行处理,最后将输出的形状转换回原来的格式。
build_2d_sincos_position_embedding是一个静态方法,用于生成二维的正弦余弦位置嵌入。该方法首先检查嵌入维度是否可以被4整除,然后创建宽度和高度的网格,并计算相应的正弦和余弦值。最终,返回一个包含这些位置嵌入的张量。
整个文件的设计旨在增强Transformer模型的能力,特别是在处理图像数据时,通过引入自定义的正则化和位置嵌入方法来提高模型的表现。
10.4 test_selective_scan_easy.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn.functional as F
def selective_scan_easy(us, dts, As, Bs, Cs, Ds, delta_bias=None, delta_softplus=False, return_last_state=False, chunksize=64):
“”"
选择性扫描函数,进行序列数据的计算。
参数:
us: 输入数据,形状为 (B, G * D, L)
dts: 时间增量,形状为 (B, G * D, L)
As: 状态转移矩阵,形状为 (G * D, N)
Bs: 变换矩阵,形状为 (B, G, N, L)
Cs: 输出矩阵,形状为 (B, G, N, L)
Ds: 额外的偏置项,形状为 (G * D)
delta_bias: 可选的偏置调整,形状为 (G * D)
delta_softplus: 是否对时间增量进行softplus变换
return_last_state: 是否返回最后的状态
chunksize: 每次处理的序列长度
返回:
计算结果,形状为 (B, -1, L)
如果return_last_state为True,还会返回最后的状态
"""
def selective_scan_chunk(us, dts, As, Bs, Cs, hprefix):
"""
处理数据块的核心计算逻辑。
参数:
us: 输入数据块,形状为 (L, B, G, D)
dts: 时间增量块,形状为 (L, B, G, D)
As: 状态转移矩阵,形状为 (G, D, N)
Bs: 变换矩阵块,形状为 (L, B, G, N)
Cs: 输出矩阵块,形状为 (L, B, G, N)
hprefix: 前一个状态,形状为 (B, G, D, N)
返回:
ys: 输出结果,形状为 (L, B, G, D)
hs: 当前状态,形状为 (L, B, G, D, N)
"""
ts = dts.cumsum(dim=0) # 计算时间增量的累积和
Ats = torch.einsum("gdn,lbgd->lbgdn", As, ts).exp() # 计算状态转移矩阵的指数
scale = 1 # 缩放因子
rAts = Ats / scale # 归一化
duts = dts * us # 计算输入与时间增量的乘积
dtBus = torch.einsum("lbgd,lbgn->lbgdn", duts, Bs) # 计算变换矩阵的乘积
hs_tmp = rAts * (dtBus / rAts).cumsum(dim=0) # 计算当前状态的临时值
hs = hs_tmp + Ats * hprefix.unsqueeze(0) # 计算当前状态
ys = torch.einsum("lbgn,lbgdn->lbgd", Cs, hs) # 计算输出
return ys, hs
# 数据类型设置
dtype = torch.float32
inp_dtype = us.dtype # 输入数据类型
has_D = Ds is not None # 检查是否有额外的偏置项
if chunksize < 1:
chunksize = Bs.shape[-1] # 设置块大小
# 处理时间增量
dts = dts.to(dtype)
if delta_bias is not None:
dts = dts + delta_bias.view(1, -1, 1).to(dtype) # 加入偏置
if delta_softplus:
dts = F.softplus(dts) # 应用softplus变换
# 数据维度调整
Bs = Bs.unsqueeze(1) if len(Bs.shape) == 3 else Bs
Cs = Cs.unsqueeze(1) if len(Cs.shape) == 3 else Cs
B, G, N, L = Bs.shape
us = us.view(B, G, -1, L).permute(3, 0, 1, 2).to(dtype)
dts = dts.view(B, G, -1, L).permute(3, 0, 1, 2).to(dtype)
As = As.view(G, -1, N).to(dtype)
Bs = Bs.permute(3, 0, 1, 2).to(dtype)
Cs = Cs.permute(3, 0, 1, 2).to(dtype)
Ds = Ds.view(G, -1).to(dtype) if has_D else None
D = As.shape[1] # 状态维度
oys = [] # 输出结果列表
hprefix = us.new_zeros((B, G, D, N), dtype=dtype) # 初始化前一个状态
for i in range(0, L, chunksize):
ys, hs = selective_scan_chunk(
us[i:i + chunksize], dts[i:i + chunksize],
As, Bs[i:i + chunksize], Cs[i:i + chunksize], hprefix,
)
oys.append(ys) # 收集输出
hprefix = hs[-1] # 更新前一个状态
oys = torch.cat(oys, dim=0) # 合并输出
if has_D:
oys = oys + Ds * us # 加入额外的偏置项
oys = oys.permute(1, 2, 3, 0).view(B, -1, L) # 调整输出维度
return oys.to(inp_dtype) if not return_last_state else (oys.to(inp_dtype), hprefix.view(B, G * D, N).float())
代码核心部分解释:
selective_scan_easy:这是主函数,负责处理输入数据,计算输出和状态。
selective_scan_chunk:这是处理每个数据块的核心计算逻辑,计算状态转移和输出。
数据预处理:包括时间增量的处理、数据维度的调整等。
循环处理:将输入数据分块处理,并更新状态。
输出处理:合并输出结果,并根据需要返回最后的状态。
这个函数的主要目的是实现一种选择性扫描机制,适用于处理序列数据的计算,特别是在深度学习和时间序列分析中。
这个程序文件 test_selective_scan_easy.py 主要实现了一个选择性扫描(Selective Scan)算法的功能,并包含了一些用于测试的代码。选择性扫描是一种在序列数据上进行递归计算的技术,常用于深度学习中的时间序列建模。
文件的主要内容包括以下几个部分:
首先,导入了一些必要的库,包括 torch(用于深度学习的PyTorch库)、pytest(用于测试的库)以及 einops(用于张量重排的库)。接着定义了一个 selective_scan_easy 函数,它是选择性扫描的核心实现。该函数接受多个参数,包括输入序列 us、时间差 dts、矩阵 As、Bs、Cs 和 Ds,以及一些可选参数如 delta_bias 和 delta_softplus。
在 selective_scan_easy 函数内部,定义了一个 selective_scan_chunk 的内部函数,用于处理数据的分块扫描。这个内部函数实现了选择性扫描的核心数学运算,包括对输入序列的加权和累积。函数中使用了 torch.einsum 来进行高效的张量运算。
接下来,函数会对输入数据进行预处理,包括数据类型转换、形状调整等。然后,通过循环处理输入序列的各个块,调用 selective_scan_chunk 来计算每个块的输出,并将结果合并。
最后,函数返回计算结果,支持返回最后的状态信息。
在文件的后半部分,定义了一个 SelectiveScanEasy 类,它继承自 torch.autograd.Function,用于实现自定义的前向和反向传播。这个类的 forward 方法实现了选择性扫描的前向计算,而 backward 方法则实现了反向传播的梯度计算。
此外,文件中还定义了一些用于测试的函数,包括 selective_scan_easy_fwdbwd 和 selective_scan_ref,用于比较不同实现的输出结果是否一致。通过使用 pytest 框架,定义了一系列的参数化测试,确保选择性扫描的实现能够正确处理各种输入情况。
最后,文件中包含了一个 if name == “main”: 语句,用于在直接运行该文件时执行测试函数。
总的来说,这个程序文件实现了选择性扫描算法的核心逻辑,并通过测试确保其正确性,适用于需要处理序列数据的深度学习任务。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻