yolov5-模型蒸馏算法

本文介绍了在模型剪枝后,如何通过模型蒸馏技术来提升剪枝模型的精度。蒸馏过程中,使用未剪枝的模型作为教师网络,剪枝后的模型作为学生网络,通过调整相应的训练参数,使学生模型能学习到教师模型的知识,从而在一定程度上恢复精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般来说模型剪枝之后精度都会下降,微调之后会恢复一部分,但仍然达不到剪枝前的精度,因此蒸馏会在微调阶段配合使用

蒸馏是一种基于“教师-学生网络”的训练方法,教师模型参数量较大,效果更好,学生模型参数量较少,效果较差,蒸馏即让小模型学习大模型的知识,提升小模型的精度。因此需要准备教师模型和学生模型,在网络剪枝训练中一般教师模型为剪枝前的模型,学生网络为剪枝后的模型。

基本流程
在这里插入图片描述

yolov5剪枝后的模型蒸馏
在train.py中添加如下代码:

    parser.add_argument('--t_weights', type=str, default= 'models/yolov5s.pt'
### YOLO模型中的知识蒸馏方法 知识蒸馏是一种通过较小的学生模型学习较大教师模型的知识来提高效率的技术。对于YOLO(You Only Look Once)这样的目标检测模型,其知识蒸馏通常涉及特征图匹配、边界框回归以及分类概率分布的学习。 #### 特征图匹配 在YOLO模型中,学生网络可以通过模仿教师网络的中间层特征图来进行训练。这种方法可以确保学生模型不仅学习到最终的预测结果,还能够捕捉到高层次语义信息和低层次细节信息之间的关系[^1]。具体来说,损失函数可以定义为: ```python def feature_distillation_loss(student_features, teacher_features): loss_fn = nn.MSELoss() return loss_fn(student_features, teacher_features) ``` 此部分主要关注的是如何让学生的中间表示尽可能接近教师的中间表示。 #### 边界框回归 除了特征图之外,YOLO模型还需要考虑边界框的位置预测。因此,在知识蒸馏过程中也可以加入位置预测的一致性约束。这一步骤有助于提升学生模型在定位方面的准确性。 ```python def bbox_regression_loss(pred_boxes_student, pred_boxes_teacher): loss_fn = nn.SmoothL1Loss() return loss_fn(pred_boxes_student, pred_boxes_teacher) ``` 这里的`pred_boxes_*`代表由各自模型产生的预测边界框坐标。 #### 分类概率分布 最后一点也是非常重要的一点就是类别分数的概率分布一致性。采用软标签作为辅助监督信号可以帮助缓解数据不足带来的过拟合问题,并促进更平滑的决策边界形成。 ```python import torch.nn.functional as F def soft_label_loss(logits_student, logits_teacher, temperature=4.0): softmax_fn = lambda x: F.softmax(x / temperature, dim=-1) log_softmax_fn = lambda x: F.log_softmax(x / temperature, dim=-1) p_t = softmax_fn(logits_teacher) q_s = log_softmax_fn(logits_student) kl_divergence = -(p_t * (q_s)).sum(dim=-1).mean() * (temperature ** 2) return kl_divergence ``` 上述代码片段展示了如何计算两个不同温度下的softmax输出间的KL散度,从而构建起基于软标签的知识转移机制。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值