- 博客(80)
- 收藏
- 关注
原创 从代码学习深度学习 - 词的相似性和类比任务 PyTorch版
词向量(Word Embeddings)是自然语言处理(NLP)中的基石之一。它们是将词汇表中的词语映射到低维连续向量空间的技术,使得语义上相似的词在向量空间中也彼此接近。实际上,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务,这将在后面讨论。为了直观地演示大型语料库中预训练词向量的语义,让我们将预训练词向量应用到词的相似性和类比任务中。本篇博客将通过 PyTorch 代码实例,展示如何加载和使用预训练的 GloVe 词向量,并将其应用于查找相似词和完成词类比任务。
2025-06-15 16:07:04
913
原创 从代码学习深度学习 - 子词嵌入 PyTorch版
在自然语言处理(NLP)的早期阶段,词嵌入技术如Word2Vec和GloVe彻底改变了我们表示词汇的方式。它们能够将单词映射到低维稠密向量空间,捕捉词汇间的语义关系。然而,这些模型通常将每个单词视为一个独立的原子单元。词形变化:例如,“help”,“helps”,“helped”和“helping”虽然词根相同,但会被视为完全不同的词,拥有独立的向量表示,无法共享学习到的信息。罕见词和未登录词(Out-of-Vocabulary, OOV)
2025-06-14 16:00:21
1344
原创 从代码学习深度强学习 - Dyna-Q 算法 PyTorch版
在强化学习(Reinforcement Learning, RL)的广阔天地中,智能体(Agent)通过与环境(Environment)的交互来学习如何做出最优决策。无模型的强化学习(Model-Free RL)和基于模型的强化学习(Model-Based RL)。无模型RL:不尝试理解环境的动态变化,而是直接从与环境交互采样到的数据中学习策略或价值函数。我们熟悉的Q-learning、Sarsa、DQN等都属于这一类。它们通常更通用,但学习效率(即样本复杂度)较低。基于模型RL。
2025-06-11 20:36:50
1144
原创 从代码学习深度学习 - 全局向量的词嵌入(GloVe)PyTorch版
在自然语言处理(NLP)的广阔天地中,如何让计算机理解人类语言的丰富内涵,一直是核心挑战。词嵌入(Word Embedding)技术为此提供了优雅的解决方案,它将词语映射到低维、稠密的向量空间中,使得语义相近的词在空间中的距离也相近。我们之前已经熟悉了像Word2Vec这样的模型,它通过局部上下文窗口来学习词向量。然而,Word2Vec的视野有限,它一次只能看到一个小的上下文窗口,忽略了语料库中丰富的全局统计信息。今天,我们将深入探讨另一种强大的词嵌入模型——。
2025-06-11 13:49:03
651
原创 从代码学习深度强化学习 - 多臂老虎机 PyTorch版
欢迎来到“从代码学习深度强化学习”系列!在本篇文章中,我们将深入探讨一个强化学习中的经典问题——多臂老虎机(Multi-Armed Bandit, MAB)。多臂老虎机问题,顾名思义,源于一个赌徒在赌场面对一排老虎机(即“多臂老虎机”)的场景。每个老虎机(“臂”)都有其内在的、未知的获奖概率。赌徒的目标是在有限的回合内,通过选择拉动不同的老虎机,来最大化自己的总收益。探索(Exploration)与利用(Exploitation)的权衡。利用(Exploitation):选择当前已知收益最高的老虎机。
2025-06-08 15:57:33
737
原创 从代码学习深度强化学习 - 初探强化学习 PyTorch版
本文将带你初步了解强化学习 (Reinforcement Learning, RL)的基本概念,并通过PyTorch实现一些简单的强化学习算法。强化学习是一种让智能体 (agent) 通过与环境 (environment) 的交互来学习最优行为策略的机器学习方法。本文将结合理论介绍与代码实践,帮助你入门这个激动人心的领域。强化学习的核心思想是让智能体在环境中执行动作,并根据环境的反馈(奖励或惩罚)来调整其策略,最终目标是最大化累积奖励。这种学习方式与人类和动物通过试错来学习非常相似。
2025-06-07 21:04:10
1141
原创 从代码学习数学优化算法 - 拉格朗日松弛 Python版
在运筹学和组合优化的世界里,我们经常遇到一些“棘手”的问题,这些问题因为其内在的组合复杂性(例如整数变量、非线性约束等)而难以直接求解。拉格朗日松弛(Lagrangian Relaxation)是一种强大的技术,它通过将这些“复杂”约束暂时“松弛”掉,并将其以惩罚项的形式移入目标函数,从而将原问题转化为一个相对容易求解的子问题(拉格朗日松弛子问题)。这个子问题的最优解为原问题提供了一个界限(对于最大化问题是上界,最小化问题是下界)。
2025-05-20 21:12:44
1266
原创 从代码学习深度学习 - 预训练word2vec PyTorch版
词嵌入(Word Embeddings)是自然语言处理(NLP)领域中的基石技术之一。它们将词语从稀疏的、高维的独热编码(one-hot encoding)表示转换为稠密的、低维的向量表示。这些向量能够捕捉词语之间的语义和句法关系,使得相似的词在向量空间中距离更近。Word2Vec是其中一种非常流行且有效的词嵌入算法,由Google的Tomas Mikolov等人在2013年提出。
2025-05-20 20:34:47
1402
原创 从代码学习深度学习 - 用于预训练词嵌入的数据集 PyTorch版
词嵌入(Word Embedding)是将词语映射到低维连续向量空间的技术,它能够捕捉词语间的语义和语法关系。预训练词嵌入模型,如 Word2Vec(包括 Skip-gram 和 CBOW)和 GloVe,已经在自然语言处理 (NLP) 领域取得了巨大成功。这些模型通常在大型语料库上进行训练,学习到的词向量可以作为下游 NLP 任务的优秀特征输入。本文将重点关注如何为预训练词嵌入模型(以 Skip-gram 和负采样为例)准备数据集。
2025-05-19 17:02:29
1140
原创 从代码学习深度学习 - 近似训练 PyTorch版
在自然语言处理(NLP)领域,词嵌入(Word Embeddings)技术如Word2Vec(包括Skip-gram和CBOW模型)已经成为一项基础且强大的工具。它们能够将词语映射到低维稠密向量空间,使得语义相近的词在向量空间中的距离也相近。然而,这些模型在训练过程中,尤其是在计算输出层softmax时,会面临一个巨大的挑战:词汇表通常非常庞大(几十万甚至数百万个词)。对整个词典进行求和并计算梯度,其计算成本是巨大的。为了解决这个问题,研究者们提出了多种近似训练方法,旨在降低计算复杂度,同时保持模型性能。
2025-05-18 09:45:34
765
原创 从代码学习深度学习 - 词嵌入(word2vec)PyTorch版
自然语言处理(NLP)是人工智能领域中一个充满活力和挑战的分支。要让计算机理解和处理人类语言,首要任务之一就是如何表示词汇。传统的独热编码(One-Hot Encoding)虽然简单直观,但在表达词与词之间的语义关系时显得力不从心。为了克服这一局限性,词嵌入(Word Embeddings)技术应运而生,其中 word2vec 是最具里程碑意义的模型之一。本篇博客将深入探讨 word2vec 的核心思想和两种主要模型:Skip-Gram 和 CBOW(Continuous Bag-of-Words)。
2025-05-17 14:35:32
1329
原创 从代码学习深度学习 - 实战Kaggle比赛:狗的品种识别(ImageNet Dogs)PyTorch版
欢迎来到“从代码学习深度学习”系列!本次我们将通过一个实际的Kaggle竞赛项目——“狗的品种识别”(Dog Breed Identification)来深入学习如何使用PyTorch进行图像分类。这个项目的数据集源自著名的ImageNet,但专注于识别不同品种的狗。与我们之前可能接触过的CIFAR-10等数据集相比,ImageNet中的图像尺寸更大、宽高不一,这为数据预处理和模型选择带来了新的挑战。我们将一步步完成数据获取、整理、图像增广、模型微调、训练、验证以及最终的预测与提交。
2025-05-16 22:10:12
1648
原创 从代码学习深度学习 - 实战 Kaggle 比赛:图像分类 (CIFAR-10 PyTorch版)
欢迎来到我们的深度学习实战系列!在本文中,我们将深入探讨一个经典的图像分类问题——CIFAR-10挑战,并通过一个实际的 Kaggle 比赛流程来学习。我们将从原始图像文件开始,一步步进行数据整理、图像增广、模型构建、训练、评估,并最终生成提交结果。本教程将全程使用 PyTorch 框架,并详细解释每一段代码的功能和背后的原理。在以往的教程中,我们可能更多地依赖深度学习框架的高级API直接获取处理好的张量格式数据集。但在真实的比赛和项目中,我们往往需要从更原始的数据形态(如.jpg.png。
2025-05-15 20:22:33
973
原创 从代码学习深度学习 - 风格迁移 PyTorch版
大家好!欢迎来到我们的深度学习代码学习系列。今天,我们将深入探讨一个非常有趣且富有创意的计算机视觉领域——风格迁移 (Style Transfer)。想象一下,你能否将梵高的《星夜》的独特笔触和色彩应用到你拍摄的一张城市风景照片上?或者将一幅著名油画的风格赋予你心爱的宠物照片?风格迁移技术正是致力于实现这种艺术融合的魔法。简单来说,风格迁移的目标是生成一张新的图像,这张图像既保留了内容图像 (Content Image)的主要结构和物体,又融入了风格图像 (Style Image)
2025-05-15 09:56:56
1499
原创 从代码学习深度学习 - 全卷积神经网络 PyTorch版
欢迎来到我们的深度学习代码学习系列!今天,我们将深入探讨一种在计算机视觉领域中至关重要的技术——语义分割(Semantic Segmentation),并重点学习其经典实现方法:全卷积网络(Fully Convolutional Network, FCN)。语义分割的目标是为图像中的每一个像素分配一个类别标签,这使得机器能够理解图像内容的精细细节,远超于简单的图像分类或目标检测。在本篇博客中,我们将使用 PyTorch 框架,一步步构建、训练和测试一个 FCN 模型。
2025-05-13 16:29:38
1091
原创 从代码学习深度学习 - 转置卷积 PyTorch版
在卷积神经网络(CNN)的大家族中,我们熟悉的卷积层和汇聚(池化)层通常会降低输入特征图的空间维度(高度和宽度)。然而,在许多应用场景中,例如图像的语义分割(需要对每个像素进行分类)或生成对抗网络(GAN)中的图像生成,我们反而需要增加特征图的空间维度,即进行上采样。转置卷积(Transposed Convolution),有时也被不那么准确地称为反卷积(Deconvolution),正是实现这一目标的关键操作。
2025-05-11 09:48:38
918
原创 从代码学习深度学习 - 语义分割和数据集 PyTorch版
本文介绍了语义分割的基本概念及其在计算机视觉中的重要性,并详细解析了Pascal VOC2012数据集。语义分割旨在为图像中的每个像素分配类别标签,提供更精细的场景理解。文章对比了语义分割、图像分割和实例分割的区别,重点分析了Pascal VOC2012数据集的组成、类别、数据格式及评价指标。此外,提供了辅助工具代码和读取数据集的PyTorch实现,为后续的模型训练奠定了基础。Pascal VOC2012作为经典数据集,广泛应用于算法开发和基准测试。
2025-05-10 20:56:21
1782
原创 从代码学习深度学习 - 区域卷积神经网络(R-CNN)系列 PyTorch版
本博客介绍了目标检测领域中的R-CNN系列模型及其发展历程,重点探讨了R-CNN、Fast R-CNN和兴趣区域汇聚层(RoI Pooling)的核心思想与实现。R-CNN通过选择性搜索生成候选区域,并利用卷积神经网络提取特征进行分类和定位,但其计算效率较低。Fast R-CNN通过共享卷积计算和引入RoI Pooling层,显著提升了检测速度。RoI Pooling层能够将不同形状的候选区域转换为固定大小的特征图,便于后续处理。博客还通过PyTorch代码示例详细展示了RoI Pooling的计算过程,帮
2025-05-09 16:53:17
1613
原创 从代码学习深度学习 - 单发多框检测(SSD)PyTorch版
本文介绍了如何使用深度学习中的单发多框检测(SSD)算法进行目标检测,特别是基于香蕉检测数据集的实现。SSD是一种单阶段目标检测器,以其在速度和精度之间的平衡而著称。文章详细讲解了SSD的核心原理,并通过PyTorch代码展示了模型的构建、训练和预测过程。工具函数部分涵盖了数据读取、处理及加载器的创建,为后续的模型训练和结果可视化提供了支持。通过本文,读者可以深入理解SSD的实现细节,并学会如何在实际项目中应用该算法。
2025-05-08 20:40:55
1202
原创 轻松搞定!Windows 10 Hosts 文件编辑指南 (附避坑技巧)
修改hosts文件是一个非常实用的技巧,无论是为了提高工作效率(屏蔽干扰网站)还是进行 Web 开发调试,都能派上用场。正确路径无扩展名:文件名就是hosts。管理员权限:编辑和保存的必备条件。“所有文件”筛选:打开文件时的关键步骤。希望这篇指南能帮助你顺利掌握 Windows 10hosts文件的编辑方法。如果你有任何疑问或更好的技巧,欢迎在评论区留言分享!
2025-05-07 10:38:40
978
原创 从代码学习深度学习 - 目标检测前置知识(二) PyTorch版
大家好!欢迎来到“从代码学习深度学习-目标检测前置知识”的第二部分,我们将继续深入探讨目标检测的前置知识。在上一部分,我们已经了解了目标检测的基本概念和锚框的生成。今天,我们将重点关注多尺度目标检测的理念,学习如何生成不同尺度的锚框来适应不同大小的目标物体,并了解如何加载和处理自定义的目标检测数据集。本篇将结合 PyTorch 代码进行实践,帮助大家更直观地理解这些概念。目标检测的一个核心挑战是如何有效地检测图像中大小各异的物体。简单的单尺度锚框生成策略可能难以覆盖所有情况。
2025-05-05 16:25:18
1651
原创 从代码学习深度学习 - 目标检测前置知识(一) PyTorch 版
目标检测是计算机视觉领域中的一个核心问题,它的任务是识别图像中物体的类别并定位它们的位置。近年来,基于深度学习的目标检测算法取得了显著的进展。PyTorch 作为主流的深度学习框架之一,为目标检测的研究和应用提供了强大的支持。本篇博客旨在通过代码实例,介绍目标检测任务中一些重要的前置知识,特别是与边界框 (Bounding Box) 和锚框 (Anchor Box) 相关的概念和常用工具函数。理解这些基础知识对于后续学习和实现更复杂的目标检测模型至关重要。
2025-04-29 09:15:46
706
原创 从代码学习机器学习 - UMAP降维算法 scikit-learn版
在机器学习和数据科学领域,我们经常会遇到高维数据。高维数据虽然包含了丰富的信息,但也带来了“维度灾难”的问题,使得数据分析、可视化和模型训练变得更加困难和低效。降维技术应运而生,它旨在将高维数据转换到低维空间,同时尽可能保留原始数据中的重要信息和结构。主成分分析(PCA)等线性降维方法简单高效,但难以处理非线性结构的数据。流形学习作为非线性降维的重要分支,其中的t-SNE算法在可视化高维数据方面表现出色,但其计算成本较高且难以保留全局结构。
2025-04-28 21:11:34
1295
原创 Claude系列模型-20250426
最智能的模型,适合需要高深推理和多步骤分析的复杂任务,如科研、算法设计等。:响应速度最快,适合日常任务、高效的快速响应场景,如聊天机器人、即时问答等。:智能与速度的平衡,适合中等复杂度的任务,提供足够的推理能力和速度,如中等复杂度的对话系统、文档处理等。:最强大的模型,适合复杂、多维度的任务,特别是在高级战略决策、科学研究等领域表现出色。不同版本的Claude模型,选择时可以根据任务的复杂度和对速度、智能的需求来决定。
2025-04-26 21:03:06
602
原创 GPT系列模型-20250426
模型特点描述适用场景限制GPT-4o全能型,多模态支持多媒体内容生成、跨语言翻译、复杂对话长上下文处理性能瓶颈GPT-4.5高质量文本生成,情感智能强创意写作、内容创作、客户支持复杂推理和多步逻辑任务处理能力有限o3 系列深度推理,链式思维,多工具协同科学研究、数学证明、复杂编程简单任务处理效率较低o4-mini轻量级推理,多模态支持数学计算、编程辅助、图像理解极其复杂任务处理能力有限轻量级版本,性能优于 GPT-3.5 Turbo。
2025-04-26 14:54:19
1033
原创 Gemini 系列模型-20250426
Gemini 系列模型是 Google DeepMind 推出的多模态生成 AI 模型,广泛应用于文本、图像、音频、视频等多种输入输出场景。以下是对您提到的各个模型的功能对比和适用场景分析: (模型名称核心优势适用场景多模态输入输出、快速响应、成本效益智能客服、内容生成、高并发应用可控推理、平衡性能与成本实时信息处理、虚拟助手、成本敏感场景深度推理、复杂任务解决法律合同分析、医学记录解读、复杂编码任务生成详细研究报告、音频概述学术研究、市场分析、内容转化为音频个性化响应、数据透明度。
2025-04-26 13:35:22
694
原创 PyTorch与CUDA的关系
在深度学习开发中,PyTorch与CUDA的配合使用是提升训练效率的关键。然而,很多开发者常常对一个现象感到困惑:为什么系统安装了较新版本的CUDA(如12.2),而PyTorch绑定的是较旧的CUDA版本(如11.8),却仍然能正常调用GPU呢?本文将揭开这个秘密,并提供一些实用的检查和配置方法。通过本文的解析,我们理解了为什么PyTorch绑定的CUDA版本(如11.8)可以在更高版本的CUDA环境(如12.2)中正常工作。这主要归功于NVIDIA驱动的向下兼容性设计。
2025-04-25 20:39:43
1828
原创 从代码学习深度学习 - 微调 PyTorch 版
深度学习模型训练通常需要大量数据,但在实际应用中,我们往往难以获得足够的标记数据。例如,如果我们想构建一个识别不同类型椅子的系统,收集和标记数千甚至数万张椅子图像将耗费大量时间和资金。这种情况下,迁移学习特别是微调(fine-tuning)技术便显示出其强大优势。本文将通过一个热狗识别的实际案例,详细讲解如何在PyTorch中实现微调,帮助读者掌握这一重要技术。注意,本博客只列出了与微调相关的代码,完整代码在下方链接中给出,其中包含了详细的注释。下载链接微调是解决数据有限问题的强大工具。
2025-04-25 20:16:00
1650
原创 GPU实时监控神器:从 nvidia-smi 到 nvtop
在使用 GPU 训练深度学习模型或进行大规模计算任务时,实时监控 GPU 状态对于合理分配资源、优化性能至关重要。本文将介绍两个非常实用的GPU监控工具:经典的nvidia-smi和更加直观、互动的nvtop。两块 4090 正在高强度运行(91%),说明模型或者任务在跑。显存都占用了一部分,但没有满,说明显存压力不是特别大。没有明显过热现象。进程中多为 python 程序,使用的是 miniconda 环境。两块 RTX 4090 GPU 当前负载较低(基本没跑大的模型或推理任务)
2025-04-24 21:54:54
1179
原创 从代码学习深度学习 - 图像增广 PyTorch 版
在深度学习中,数据是关键。尤其是在计算机视觉任务中,高质量且丰富多样的数据对模型性能有着决定性的影响。然而,获取大量标注的图像数据往往成本高昂且耗时。这时,图像增广(Image Augmentation)技术就显得尤为重要,它通过对现有数据进行变换生成更多样化的训练样本,帮助模型学习更鲁棒的特征表示,从而提高泛化能力。本文将通过代码示例,介绍如何在PyTorch框架下实现图像增广,并分析其对模型性能的影响。
2025-04-24 20:30:29
1143
原创 从代码学习深度学习 - 多GPU训练 PyTorch 版
深度学习模型的训练通常需要大量计算资源,尤其是在处理大规模数据集或复杂模型时,单GPU的性能可能成为瓶颈。多GPU并行训练通过将计算任务分配到多个GPU上,可以显著加速训练过程。PyTorch 提供了强大的多GPU支持,例如通过实现数据并行,适合快速上手。本文将基于一个实际的多GPU训练示例,展示如何使用 PyTorch 在 MNIST 数据集上训练一个卷积神经网络(CNN)。我们将完整呈现代码,解析其实现原理,并展示训练结果的可视化。
2025-04-24 09:01:33
1103
原创 从代码学习深度学习 - 自动并行 PyTorch 版
在深度学习中,计算效率是模型训练和推理的关键。随着硬件性能的提升,特别是多GPU设备的普及,如何高效利用这些计算资源成为一个重要课题。PyTorch 等深度学习框架通过自动构建计算图,提供了自动并行化的能力,使得开发者无需手动编写复杂的并行代码即可实现高效的计算。本文将通过代码示例,深入探讨 PyTorch 中自动并行的实现,涵盖工具函数、GPU并行计算、数据通信以及同步数据并行训练的完整流程,帮助读者从代码层面理解深度学习的并行优化。下载链接。
2025-04-23 14:15:55
1379
原创 从代码学习深度学习 - 异步计算 PyTorch 版
在深度学习中,计算效率是模型训练和推理的关键。PyTorch 作为一个强大的深度学习框架,提供了对异步计算的原生支持,特别是在 GPU 上的操作。本文将通过代码示例深入探讨 PyTorch 中的异步计算机制,分析其性能优势,并展示如何通过简单的工具方法测量和优化计算性能。下载链接Python 本身并不擅长并行和异步编程,因为其解释器是单线程的,且受全局解释器锁(GIL)的限制。然而,PyTorch 通过其底层的 C++ 后端和调度器,实现了高效的异步计算。
2025-04-22 20:26:46
1271
原创 解码 Python 上下文管理器 - with 语句的优雅之道
在 Python 中,资源管理(如文件操作、数据库连接)是一项常见任务,而如何确保资源被正确分配和释放则是一个挑战。Python 的with语句和上下文管理器(Context Manager)提供了一种优雅的解决方案,让代码既安全又简洁。在“Python 解码”系列的第十一篇中,我们将深入探索上下文管理器的实现原理,揭示它如何与with语句携手打造可靠的资源管理模式。你是否曾担心文件未关闭或锁未释放?或者希望以更简洁的方式处理资源?
2025-04-22 14:35:02
666
原创 从代码学习深度学习 - 编译器和解释器 PyTorch 版
在深度学习的世界中,编程范式对模型开发和部署的效率有着重要影响。命令式编程(imperative programming)和符号式编程(symbolic programming)是两种常见的编程方式,各有优劣。PyTorch 作为一个广受欢迎的深度学习框架,以其灵活的命令式编程而闻名,同时通过 TorchScript 提供了符号式编程的性能优势。本文将通过代码示例,深入探讨命令式编程、符号式编程以及 PyTorch 中的混合式编程,展示如何利用这些技术提升深度学习模型的性能和可移植性。
2025-04-22 14:20:04
1204
原创 从代码学习深度学习 - 学习率调度器 PyTorch 版
学习率是深度学习优化中的关键超参数,决定了模型参数更新的步长。固定学习率可能导致训练初期收敛过慢或后期在次优解附近震荡。学习率调度器(Learning Rate Scheduler)通过动态调整学习率,帮助模型在不同训练阶段高效优化,平衡快速收敛与精细调整的需求。
2025-04-21 14:14:11
1183
原创 解码 Python 函数装饰器 - 增强代码的魔法
Python 的魅力在于它总能以简洁的方式解决复杂问题,而函数装饰器(Decorator)正是这种优雅的体现之一。在“Python 解码”系列的第十篇中,我们将深入探索函数装饰器,揭开它如何在不修改原函数代码的情况下,为函数添加额外功能的神秘面纱。你是否希望为函数添加日志、计时或权限检查,却不想改动核心逻辑?装饰器正是为此而生!通过本文,你将掌握装饰器的基本原理、实现方式以及在实际开发中的妙用。让我们一起开启这场代码增强的魔法之旅吧!
2025-04-21 10:39:14
885
原创 解码 __call__ - 让对象如函数般调用
Python 的灵活性让开发者可以突破传统编程的界限,其中一个令人着迷的特性是让对象像函数一样被调用。在“Python 解码”系列中,我们将深入剖析__call__魔法方法,揭示它如何赋予对象可调用的能力,模糊了对象与函数之间的界限。你是否想过一个对象可以像函数一样用()调用?或者希望为类添加动态的行为?通过本文,你将掌握__call__的核心原理,并发现它在实际开发中的强大用途。让我们一起解锁这一 Python 魔法吧!__call____call__它赋予对象动态行为,结合状态和逻辑。
2025-04-20 19:47:28
1007
原创 从代码学习深度学习 - 优化算法 PyTorch 版
优化算法是深度学习的核心,它们决定了模型训练的效率和结果的质量。在这篇博客中,我们将通过 PyTorch 代码实例,深入理解各种优化算法的原理和实现。我们将使用一个简单的线性回归任务,在数据集上比较不同优化算法的表现。这个数据集包含了与翼型自噪声相关的特征和目标变量。该博客中仅仅介绍了不同的优化算法,利用这写算法实现特定任务的流程这里不再介绍,请参考从代码学习深度学习 - 小批量随机梯度下降 PyTorch 版。通过代码学习,我们能够建立更直观的理解,看到优化算法在实际训练中的差异。
2025-04-19 20:16:49
4830
2
原创 从代码学习深度学习 - 小批量随机梯度下降 PyTorch 版
深度学习是人工智能领域的核心技术之一,而小批量随机梯度下降(Mini-Batch Stochastic Gradient Descent, SGD)是训练神经网络的基石算法。本文将通过一个完整的 PyTorch 实现,带你深入理解小批量 SGD 的工作原理。我们以 NASA 的为例,展示如何使用 PyTorch 构建数据加载器、定义模型、训练神经网络,并可视化训练过程。小批量随机梯度下降公式:本文的目标是通过代码逐步解析深度学习的核心组件,帮助初学者从实践中掌握理论知识。
2025-04-18 14:37:38
3439
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人