Decision-Driven Regularization A Blended Model for Predict-then-Optimize

摘要

在上下文优化中,决策者寻求最佳决策以最小化成本,该成本基于观察到的特征而变化。这种上下文在许多业务应用程序中很常见,从按需交付和零售运营到投资组合优化和库存管理。在本文中,我们研究了预测然后优化的方法,该方法首先了解结果如何从特征中产生,然后根据这些结果选择最佳决策。由于无法获得真实结果,我们在文献中发现成本函数的定义存在歧义。为了解决这个问题,我们提出了一个混合的预测然后优化框架,该框架可能会导致对结果的预测有偏差,但可以轻松地将优化问题纳入预测阶段。这是通过决策驱动的正则化实现的。

我们批判性地表明,可以从三个角度来解决预测然后优化问题,即正则化、鲁棒优化和后悔最小化方法;并证明这些观点等效于或可以自然地近似以得出我们提出的模型。因此,我们的框架概括了 Elmachtoub 和 Grigas(2020)中的 SPO+ 和 Zhu 等人中的 JERO 等模型。(2020)。基于我们的框架,我们提出了混合模型,我们在数值上展示了在低错误规格下优于 SPO+

1引言

在不确定性设置下的许多决策中,优化目标和约束是通过使用数据来估计的。名义上,这可以写成以下成本最小化问题

公式

对于一些决策变量 y ∈ Y 和一些未观察到的参数 z。一个例子是自适应路由的上下文,例如按需交付服务所面临的上下文(也在 Elmachtoub 和 Grigas 2020 中讨论过)。 假设决策者要选择 d 条路线来运送包裹。
然后,z 可能代表在这些路线中的每条路线上花费的未观察到的时间,而 y 可以代表选择哪条路线的决定。 总共花费的时间为 c(y; z) = y >z。
这个问题是历史背景。 最近,重点是如何使用可能描述未观察到的结果 z 的数据来做出正确的决策 y,同时认识到这些数据并不能完全代表生成它们的 z 的真实分布。 这导致了数据驱动的稳健优化模型(例如 Van Parys 等人 2020、Sutter 等人 2020)的工作流,其中分布以模糊集为特征,通常在某种发散度量下(Ben -Tal 等人 2013,Lam 2016 年),或构建为围绕每个数据点的球,例如在 Wasserstein 歧义集中(Gao 等人 2017,Mohajerin Esfahani 和 Kuhn 2018)。

1.1 上下文随机优化

研究的重点越来越多地转移到存在可能有助于估计未观察到的 z 的附加信息的设置。我们将表示为 x 的这些信息有时称为特征(或辅助信息或协变量)。决策者希望根据此附加信息 y(x)(den Hertog 和 Postek 2016)做出不同的决定。回到自适应路由的例子,这里,如果决策者有 n 个包裹要交付,那么可以想象,这些包裹中的每一个的最佳路线选择应该不同。但当然,每个包裹在这些路线上实际花费的时间是未知的,可能会因目的地、一天中的时间、当前的拥堵情况、当前的天气等因素而有所不同。这些因素在做出决定的点,它们形成了特征。特别是,决策者拥有一个历史数据集,有助于推断旅行时间与此类特征之间的关系。

此设置通常称为上下文随机优化(或有时称为决策感知学习或联合预测和优化)。它越来越普遍,可以在从按需交付(Liu 等人,2020 年)到零售运营(Ferreira 等人,2016 年,Perakis 等人,2018 年)以及投资组合优化(Ban 等人,2018 年)等各种环境中看到。 2018)到库存管理(Craig 和 Raman 2016、Qi 等人 2020、Siegel 和 Wagner 2020)等等。

通常的提法是一个可能在这种情况下写的是以下优化问题:

公式1

其中 y( · ) 是决策者希望解决的决策规则,在一些被考虑为 Y 的函数类别中,结果 z 和特征 x 之间存在一些固有的但目前未知的关系 z|x .

这样的表述构成了 Deng 和 Sen(2018 年)、Bertsimas 和 McCord(2019 年)、Bertsimas 和 Kallus(2020 年)、Kallus 和毛泽东(2020 年)、Kannan 等人的最佳特征作品的起点。

(2020)。在这种情况下,函数类 Y 的选择对于确保易处理性很重要。

最简单的是线性决策规则(例如,在 Beutel 和 Minner 2012、Ban 和 Rudin 2019 中提出的)。在某些情况下,如果利用结构(即 z 和 x 之间关系的性质),可以考虑更复杂的类,例如 Bertsimas 等人。(2019),作者考虑了决策的树结构,在这种情况下是治疗组的分配。

使用 (1) 中第二种形式的替代方法需要估计期望 Ez|x。通过将决策构建为加权样本平均近似 (SAA) 的解决方案,提出了一种解决此类公式的方法。在这里,权重将被最优确定,例如,在 Bertsimas 和 Kallus (2020) 中,作者通过回归方法选择权重,例如 k-最近邻 (kNN)、核、分类和回归树 (CART),或随机森林(RF)。Ban 和 Rudin (2019) 也提出了这种方法来解决报童问题。

1.2 先预测后优化

该文献的一个子流特别研究了以下解决确定性问题的方法,

公式2

其中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值