摘要
在化学制造过程中,设备退化会对工艺性能产生重大影响,或导致装置故障,从而导致相当长的停机时间。因此,维护计划是一个重要的考虑因素,并且在联合调度生产和维护操作方面已经加大了力度。在此背景下,一个主要挑战是预测设备健康模型中固有的不确定性。特别是,与此类模型中的随机性相关的概率分布通常难以估计,因此不准确。在这项工作中,我们应用分布式鲁棒优化(DRO)方法来解决这个问题。具体而言,所提出的公式优化了关于瓦瑟斯坦模糊集的最坏情况下的预期结果,并且我们应用了允许多级混合整数追索的决策规则方法。进行了计算实验,包括一个真实世界的工业案例研究,其中的结果证明了二进制资源和DRO在解决方案质量方面的显著优势。
关键词 分布式鲁棒优化、设备退化、集成生产和维护、过程调度
1引言
近年来,化学工业在预测性维护领域显著增加了努力,在预测性维修领域,建立了数据驱动的设备健康模型,以预测设备退化程度并估计故障概率。1虽然预测性维护的概念并不新鲜,由于我们提高了收集和处理设备特定数据的能力,它再次受到关注。实时监测和预测设备健康状况的能力能够实现基于状态的维护,其中维护活动是基于实际设备状态执行的。2与传统预防性维护相比,这可以大幅降低成本,传统预防性维修通常以不必要的高频率安排维护任务,这仅在设备故障后执行。
工业制造过程的基于状态的维护必须考虑操作方面。在一个方面,设备退化是设备单元运行历史的函数,设备在生产效率和容量方面的性能通常取决于其健康状态。
另一方面,在进行维护时,机组可能必须关闭或以降低的负荷运行。生产、维护和设备退化之间的密切联系促使了同时优化生产和维护活动的计划和调度方法的发展。Dedopoulos和Shah3是第一个解决这个问题的人,他们专注于多用途工厂的短期调度。Jain和Grossmann 4考虑了乙烯装置熔炉系统中生产和清洁操作的最佳循环调度,他们明确地将性能随时间的指数衰减纳入其模型。Pistikopoulos等人5使用非递减分段常数函数来模拟退化,解决了集成生产和维护规划问题。类似的方法已应用于热交换器网络,6生物制药制造工艺、7个压缩机网络、8个建筑HVAC系统、9个等等。根据应用情况,需要在不同的时间范围内考虑维护。虽然早期的工作侧重于短期调度,但最近的贡献涉及长期周转10和涉及短期调度和长期规划的多尺度设置。11,12设备退化是一个固有的随机和复杂过程,受到许多因素的影响,包括运行条件、自然磨损和结垢。此外,我们通常没有所需的测量或足够的数据来建立准确的退化模型,这导致了显著的模型不确定性。事实上,大多数退化模型有两个组成部分:退化程度的点估计和相关的置信水平。13考虑这种不确定性很重要,否则我们可能会做出次优甚至不安全的运营决策。然而,尽管在处理不确定性的过程调度的一般领域有许多贡献,14但关于不确定性下具体生产和维护调度的文献相当稀少。Basciftci等人15应用于贞操编程,以解决使用基于条件的故障场景的发电机组调度问题,16 Wiebe等人17应用鲁棒优化方法来考虑随机设备退化,并使用贝叶斯优化来优化不确定性集的大小,以平衡预防性维护和纠正性维护的成本。
不确定性通常由不确定参数的概率分布来定义,这需要在大多数随机优化方法中指定(注意,即使是稳健优化也需要分布的支持)。然而,在我们对实际过程数据的分析中,我们注意到,描述退化相关不确定性的概率分布通常很难估计,并且随着时间的推移可能会发生相当大的变化(详见第2节)。因此,概率分布并不准确,这使得在这种不确定性下进行不确定性量化和优化成为一项具有挑战性的任务。这项工作的主要动机是这一特殊挑战。在这里,我们考虑了装备退化不确定性下的综合生产和维护调度,并提出了一种分布式鲁棒优化(DRO)方法,其中我们针对一组可能的概率分布(也称为模糊集)优化最坏情况下的预期性能。通过这样做,我们鲁棒地解决了概率分布本身的不确定性。在过去十年中,DRO领域取得了重大进展,主要由运营研究界贡献。18–21直到最近,DRO也开始引起过程系统工程(PSE)界的关注。22–24为了全面审查DRO,见Rahimian和Mehrotra。25在不确定性条件下,我们在生产和维护调度方面的贡献与之前的工作之间的另一个主要区别是纳入了多级混合整数追索权。与现有的静态和两阶段模型相比,多阶段公式更准确地捕捉了实际的顺序决策过程,因此可以提供改进的解决方案。为此,我们应用Georghiou和同事最初提出的决策规则方法26,27,最近由Feng等人改进。28基于决策规则的多阶段公式主要应用于可调鲁棒优化(ARO)的文本中,在过程调度中有几个成功的应用。29–34然而,这些工作中的绝大多数只考虑了连续追索。我们请读者参阅Yanıko glu等人35和Georghiou等人36,以了解关于ARO的评论,尤其是关于决策规则方法的评论。
本文的主要贡献如下:
•我们扩展了Biondi等人11提出的确定性综合生产和维护调度模型,以考虑负载相关退化和多种维护选项,包括离线和在线维护。此外,退化对工艺运行性能的影响以退化相关生产能力的形式考虑。
•我们提出了确定性模型的分布式鲁棒扩展,该模型捕捉了设备单元健康状态的不确定性。
应用随机设备健康模型,该模型涉及具有分布模糊性的随机变量,该模型使用Was-serstein模糊集进行描述。
•我们将提升不确定性的概念应用于设计多级混合整数决策规则,这允许我们制定DRO问题的可处理近似。
•综合计算案例研究,包括一个说明性示例和一个真实世界的熔炉系统调度案例,旨在证明所提出方法的有效性。
本文的其余部分组织如下。在第2节中,我们通过一个真实世界的例子进一步激励我们的工作。在第3节中,开发了确定性调度模型,而在第4节中推导了具有退化不确定性的分布式鲁棒模型。我们使用第5节中概述的决策规则方法来解决由此产生的问题。第6节介绍了我们计算案例研究的结果,最后,第7节提供了总结意见。
符号我们使用小写和大写粗体字母分别表示向量和矩阵,例如,x∈Rn和A∈Rm。标量用非粗体字母表示。向量x的第i个元素用xi表示。我们使用1()表示指示函数。
此外,0和e分别是零向量和全1向量,其维数可以从上下文中推断。
2 动机例子
虽然我们提出的方法可以应用于广泛的制造过程,但这项工作主要是由一个涉及工业乙烯装置的真实案例推动的。具体而言,我们考虑了裂解炉的操作和维护。
在这些炉的操作过程中,焦炭积聚在炉管的内表面上,这降低了裂解过程的效率。因此,熔炉需要定期除焦,焦炭厚度不得超过给定的限制。
焦炭厚度是设备等级的良好指标;然而,当炉子运行时很难直接测量。相反,通常使用其他可测量的量(如产品产量、压降和管壳温度)通过软测量方法来估计。
由于在预测性维护中很常见,我们使用剩余使用寿命(RUL)作为设备健康状态的度量。在乙烯裂解炉的情况下,RUL与焦炭厚度成反比。焦炭沉积主要取决于原料和加工材料的数量。给定原料i,我们使用以下形式的连续状态模型来预测rt,即时间t时熔炉的RUL:
(1)
其中rt 1是时间t1的RUL,Δt是时间段t的持续时间,时间段t是时间点t1和t之间的时间,xit表示时间段t中处理的材料i的量,μ是漂移参数,是xit的函数。与退化过程相关的不确定性被捕获在随机变量wt中。模型(1)表示基于随机过程(如常用的Wiener和Gamma过程)的一类流行的RUL模型。37在这项工作中,我们假设μ是xit的仿射函数,即
(2)
其中系数li和^li可以从历史数据中估计。
当试图从历史数据构建退化模型时,我们注意到wt的概率分布似乎随时间而变化,这使得难以获得准确的估计。
图1显示了从3个月的历史数据得出的两个不同熔炉的重量经验分布,Δt为6 h。对于每个熔炉,我们生成了两个直方图,一个使用前半部分的数据,另一个使用3个月后半部分的数据。对于炉1,如图1A所示,两个直方图有很大不同。这可以但只能部分解释为,在前一个半月,熔炉主要处理石脑油,而在后一个半月中,熔炉处理加氢裂化尾气油(HVGO)。相比之下,2号炉在整个3个月内处理石脑油。因此,图1B中的两个直方图更加相似,但差异仍然显著。
由于分