自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 收藏
  • 关注

原创 【工作笔记】win11系统docker desktop配置国内mirror不生效解决方案汇总整理

配好了registry-mirrors,docker info显示也正常,但实际docker compose up -d的时候还是报Get https://registry-1.docker.io/v2/:xxxx。整理了一下目前的解决思路,挨个试吧,这次解决用的是第二个方法。

2025-08-12 17:20:14 61

原创 【工作笔记】Wrappers.lambdaQuery()用法

是 MyBatis-Plus 提供的的快捷工具。它返回一个,好处是完全,IDE 还能自动补全字段。

2025-08-11 16:16:31 169

原创 【工作笔记】关于什么时候必须写this(会不会让AOP失效)

Spring AOP(无论是 JDK 动态代理还是 CGLIB)是在。,AOP 的切面(事务、日志、权限等)照样生效。都会先经过代理,不会受影响。上的 AOP 增强会失效。,而不是代理对象,所以。

2025-08-11 15:46:01 116

原创 【工作笔记】Docker Desktop一直转圈加载不出来然后报错

把网上搜到的解决方案都尝试了一遍,包括netsh winsock reset、重启、开Hyper-v、wsl --update各种。一直转圈加载不出来,过了很久之后报这个错。

2025-08-08 18:14:39 175

原创 【工作笔记】List合并

【代码】【工作笔记】List合并。

2025-07-29 09:38:27 84

原创 【工作笔记】判断一条方法需不需要事务/AOP

(如。

2025-07-28 17:13:30 186

原创 【工作笔记】查询时如何获得当天的起止时间

【代码】【开发笔记】查询时如何获得当天的起止时间。

2025-07-28 14:21:45 88

原创 【工作笔记】spacy和pydantic版本冲突解决

换成兼容的pydantic版本就可以。

2025-01-10 18:56:57 445

原创 【工作笔记】word四个直角显示不全

解决方法:鼠标放在页面边缘出现该标志时双击。

2024-11-13 15:19:24 755

原创 【学习笔记】关于String类的问题汇总(思维导图版)

参考资料:

2024-07-23 16:10:12 271

原创 【论文阅读笔记】Efficient Long-Text Understanding with Short-Text Models

SLED是一种适用于encoder-decoder结构Transformer模型的长文本处理方法。其核心思想是将输入文本划分为重叠的块,利用预训练模型编码器处理每个块,再通过解码器融合块间信息。具体实现中:源文档被分成C个重叠块,每块包含有效token和边界token,有效token通过局部上下文获得表示后传递给解码器。解码器使用标准交叉注意力机制整合所有块的信息,并可在输入前添加任务前缀。该方法在SCROLLS数据集上的摘要、问答等任务中表现良好,计算复杂度保持线性增长。

2024-07-23 10:15:05 256 1

原创 【工作笔记】并行处理大量业务数据情况

本文探讨了使用CompletableFuture实现多线程并行处理大规模日期区间合并问题的方法。针对60万条数据量,作者比较了四种处理方案:1)串行处理;2)普通分片+多线程;3)Guava框架分片;4)Apache Commons分片;5)Hutool框架分片。实验结果表明,多线程方案能显著缩短处理时间(约减少50%),各框架分片方法性能相近。关键点包括:正确使用CompletableFuture.allOf()避免串行阻塞,先分片后合并的两阶段处理流程,以及三种常用集合工具库(Guava/Commons

2024-07-19 17:58:37 351

原创 【论文阅读笔记】Legal Prompt Engineering for Multilingual Legal Judgement Prediction

长输入文档的多步推理:《Revisiting transformerbased models for long document classification》法律摘要:《Billsum: A corpus for automatic summarization of us legislation》:0样本的legal prompt engineering可以用于大型语言模型的法律判决预测任务。max length是2048,超过2048的就截断。多语言法律判决预测的法律prompt工程。

2023-06-30 19:24:46 269 1

原创 【论文阅读笔记】knowledge graph

摘要:摘要的序列到序列模型已经得到了广泛的研究,但生成的摘要通常含有捏造的内容,并且通常被发现是接近提取的。具体来说,在编码过程中,我们提出了两个基于图的模块,将知识图信息纳入纸张编码中,而在解码过程中,提出了一个两阶段解码器,首先以描述性句子的形式生成摘要的知识图信息,然后生成最终摘要。经验结果表明,与最先进的抽象摘要系统相比,无论是在独立训练的事实正确性评估器还是人工评估下,FASUM都能生成具有显著更高事实正确性的摘要。在本文中,我们建议通过知识的融合来提高摘要的事实正确性,即。

2023-05-30 16:20:34 254 1

原创 【论文阅读笔记】Decomposition-Based Approach for Model-Based Test Generation

具体是给一个测试谓词,用检查器来监测陷阱属性,如果属性为false,证明测试谓词可行,返回的反例是覆盖测试谓词的测试,如果属性为true,说明不可行,没有可以覆盖它的测试,如果在没提供任何结果的情况下终止,就是状态爆炸了,用户不知道测试谓词能不能被覆盖。但是时间的减少取决于模型的大小,下图是每个模型生成时间的百分比变化,模型的排序是按大小也就是状态数递增排的,StrongTP和WeakTP可以减少大模型的生成速度,但是会增加小模型的生成速度,因为模型小的时候分解的开销是大于收益的。Θ是变量的初始状态。

2023-05-10 19:44:53 371 2

原创 【论文阅读笔记】MemSum:Extractive Summarization of Long Documents

自用阅读笔记题目:MemSum: Extractive Summarization of Long Documents Using Multi-Step Episodic Markov Decision ProcessesTASK:长文本摘要(抽取式)实验结果:Intro:做抽取式摘要一般就是先打分然后挑句子来组成摘要,从而导致的一个问题就是句子的分数不会根据对之前选择的句子所组成的当前部分摘要而更新,也就是说没有对历史信息的提取,这样会很容易出现冗余的情况(因为会重复选高分的句子)。上图是文章提出来的解决

2023-05-03 20:24:26 282 2

原创 【论文阅读笔记】Can GPT-3 Perform Statutory Reasoning?

【论文阅读笔记】Can GPT-3 Perform Statutory Reasoning?

2023-02-28 15:36:35 193 1

原创 【论文阅读笔记】Text-guided Legal Knowledge Graph Reasoning

【论文阅读笔记】Text-guided Legal Knowledge Graph Reasoning

2023-02-13 16:47:03 440 1

原创 【论文阅读笔记】AutoLAW:Augmented Legal Reasoning through Legal Precedent Prediction

【论文阅读笔记】AutoLAW:Augmented Legal Reasoning through Legal Precedent Prediction

2023-02-13 10:14:24 203 1

原创 【论文阅读笔记】Large language models are reasoners with self-verification

Large language models are reasoners with self-verification

2023-02-01 16:33:24 977 1

原创 【论文阅读笔记】ArgLegalSumm 法律方面的生成式摘要模型

【论文阅读笔记】ArgLegalSumm 法律方面的生成式摘要模型

2023-01-17 15:48:16 471 1

原创 【论文阅读笔记】Read Top News First: A Document Reordering Approach forMulti-Document News Summarization

【论文阅读笔记】Read Top News First: A Document Reordering Approach forMulti-Document News Summarization

2022-12-24 11:23:11 139 1

原创 【论文阅读笔记】Watch Your Step: Learning Node Embeddings via Graph Attention

【论文阅读笔记】Watch Your Step: Learning Node Embeddings via Graph Attention

2022-12-24 11:09:18 273 1

原创 【论文阅读笔记】Cross-Lingual Abstractive Summarization with Limited Parallel Resources

【论文阅读笔记】Cross-Lingual Abstractive Summarization with Limited Parallel Resources

2022-12-24 11:06:58 406 1

原创 【论文阅读笔记】HIBRIDS: Attention with Hierarchical Biasesfor Structure-aware Long Document Summarization

【论文阅读笔记】HIBRIDS: Attention with Hierarchical Biasesfor Structure-aware Long Document Summarization

2022-11-12 15:56:43 523 1

原创 【论文阅读笔记】Autoencoder as Assistant Supervisor

Autoencoder as Assistant Supervisor: Improving Text Representation for Chinese Social Media Text Summarization

2022-09-14 11:05:18 459 1

原创 【工作笔记】labelme安装/错误记录(自用)

labelme安装/错误记录(自用)

2022-09-03 10:36:13 3332 5

原创 【学习笔记】数据库系统第三章笔记自用

e.g. 日期型: DATE ‘1975-05-17’, TIME ‘15:00:00’

2020-11-25 22:19:34 129

原创 【学习笔记】《深入理解计算机系统》第二章笔记(自用)

大多数计算机使用字节作为最小的可寻址的内存单位。虚拟地址空间,所有虚拟内存的可能地址的集合,它是一个展现给机器级程序的概念性映像(具体见第九章 后补)。在二进制下的值域是00000000 ~ 11111111,在十进制下的值域是0 ~ 255,在十六进制下的值域是00 ~ FF。【基本知识点:进制之间的转换】对于一个字长为w位的机器而言,虚拟地址的范围为0 ~ 2-1。我们将程序称为32位或64位,区别在于该程序是怎么编译的而不是其运行的机器类型。

2020-08-20 23:47:30 387

原创 【学习笔记】《深入理解计算机系统》笔记第一章(自用)

这里加一个冯诺依曼瓶颈问题:CPU再快,也要等内存,因为CPU和内存之间的性能差距越来越大。冯诺依曼架构不区分数据与指令,将两者放在同一内存中,指令和数据放在一起的后果是取指令和取数据不能同时进行,否则会引起访存的混乱。发展到今天,CPU的运算速度已经远远超过了访存速度,因此CPU必须浪费时间等数据。这里有一个指令集结构和处理器的微体系结构的区分:指令集架构描述的是每条机器代码指令的效果,而微体系结构描述的是处理器实际上是如何实现的。

2020-08-13 22:59:01 351

原创 【学习笔记】操作系统概念进程基础0040

p2=14-1=13;p3=17-2=15;平均=(10+13+15)/3=12.67。,系统会花大量的的时间来处理进程切换,从而导致示记用于进程的时间比例减少。(切换进程的开销占比应<1%)这里,如果某个进程的时间片还没用完但是已经结束了,也会进行调度。:使得每个进程都能在一个时间片内完成,则RR会退化为FCFS,需要画一个就绪队列出来以便get先后顺序。

2020-06-21 10:08:43 2713 1

原创 【学习笔记】操作系统概念进程基础1440

进程具有的特征。异步性是指,各并发执行的进程以各自独立的、不可预知的速度向前推进。是指多个进程并发访问和操作同一数据且执行结果与访问发生的特定顺序有关。进程同步:有的进程之间需要相互配合地完成工作,各进程的工作推进需要遵循一定的先后顺序。

2020-05-05 14:37:31 569

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除