Python 点云生成高程模型图(DSM)

本文介绍了DSM(Digital Surface Model)的概念,它用于表示地表地形及物体的数字化高度信息。通过激光雷达或摄影测量技术获取数据。接着展示了如何使用Python进行环境配置,包括laspy、numpy等库,以及提供的代码示例,最终实现DSM的生成并进行了结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是DSM?

  DSM(Digital Surface Model)是一种数字高程模型,通常用于描述地表地形的数字化表示。它是由一系列离散的高程数据点组成的三维地形模型,其中每个点都具有其相应的高程值。
  DSM主要用于获取和分析地表地形特征,比如山脉、河流、湖泊等,以及建筑物、植被和其他人工或自然物体的高度和形状。它通常通过激光雷达(LiDAR)或光学立体摄影测量技术来获取。与DEM(Digital Elevation Model)有所不同,DEM只表示地面的高程,而DSM则包括地面以及地面上的物体(如建筑物、树木等)的高程。因此,DSM比DEM更全面地描述了地表地形。

二、python代码

2.1 环境配置

pip install laspy
pip install numpy
pip install scipy
pip install matplotlib
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python

2.2 代码示例


                
### 使用 CloudCompare 生成数字高程模型 (DOM) CloudCompare 是一款功能强大的开源软件,能够处理大规模点云数据并生成多种地理空间产品,其中包括数字高程模型(Digital Elevation Model, DEM),以及类似的数字表面模型DSM)或数字正射影像图(DOM)。以下是关于如何利用 CloudCompare 的方法来生成 DOM 或其他相关产品的详细介绍。 #### 软件基础与适用范围 CloudCompare 支持多种点云格式的数据输入,例如 LAS/LAZ 文件、ASCII 文本文件以及其他常见格式[^2]。其核心优势在于高效的点云管理和快速的算法实现能力,适用于处理数百万甚至数十亿级别的点云数据集[^3]。 #### 数据预处理阶段 在正式生成 DOM 前,通常需要对原始点云数据进行必要的清理和分类操作。这一步骤对于去除噪声点、分离地面点和其他非地面特征至关重要。具体过程如下: 1. **加载点云数据** 打开 CloudCompare 并导入目标点云文件。如果使用的是无人机航测生成的 Las 点云,则可以直接通过 `File -> Open` 加载该文件[^4]。 2. **去噪处理** 利用内置工具移除异常值或其他干扰因素。可以通过菜单栏中的 `Tools -> Outlier Removal` 功能完成此任务。参数调整需依据实际场景需求设定合适的距离阈值[^5]。 3. **地面点提取** 地面点的精确识别直接影响最终 DEM/DOM 的质量。推荐采用 CloudCompare 提供的滤波器选项 (`Filters`) 中的分割算法或者自定义脚本来执行这一环节。例如,基于高度差异的方法可有效区分地形起伏和平坦区域内的物体。 #### 数字高程模型创建流程 经过上述准备之后,即可进入关键步骤——构建 DEM 及后续转换至 DOM 形式的过程: 1. **栅格化点云** 将筛选后的地面点转化为规则网格形式表示的高度信息矩阵。选择命令路径为 `Plugins -> Grid -> Rasterize...` ,在此对话框里指定单元大小(cell size),确保分辨率满足项目精度要求的同时兼顾计算效率。 2. **导出成果文件** 完成栅格化后,保存所得结果为标准 GIS 格式的 TIFF 图像或者其他兼容类型。这样便形成了初步意义上的 DEM 数据源。 3. **纹理映射生成 DOM** 若追求更高层次的表现效果即带有真实色彩渲染的地图视图,则还需额外采集对应的 RGB 影像资料并与现有三维坐标系关联起来形成完整的视觉呈现体系。借助插件扩展功能或是外部图像处理程序辅助完成最后合成工作。 ```python import cloudcompare # 初始化 CC 应用实例 cc_app = cloudcompare.CloudCompare() # 导入LAS点云文件 input_file_path = 'path_to_your_las_file.las' cloud_entity = cc_app.load(input_file_path)[0] # 设置过滤条件以获取地面点 ground_filter = cloudcompare.CCFilter() ground_filter.setGroundClassification(True) filtered_ground_points = ground_filter.apply(cloud_entity) # 进行栅格化操作 raster_params = {'cell_size': 0.5} # 设定适当的空间分辨率 dem_grid = filtered_ground_points.rasterize(**raster_params) # 输出DEM到TIFF文件 output_tiff_path = 'output_dem.tif' dem_grid.saveAsGeoTiff(output_tiff_path) ``` 以上代码片段展示了如何编程方式调用 CloudCompare API 来自动化整个流水线作业链路[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶探索站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值