ClusterGAN: Latent Space Clustering in Generative Adversarial Networks论文理解

目的:使用GAN在隐空间中进行聚类

一、背景

普通GAN的训练过程:minθGmaxθDEx∼Pxrq(D(x))+Ez∼Pzq(1−D(G(z)))min_{\theta G}max_{\theta D}\textbf{E}_{x\sim P^r_x}q(D(x))+\textbf{E}_{z\sim P_z}q(1-D(G(z)))minθGmaxθDExPxrq(D(x))+EzPzq(1D(G(z))),它无法在隐空间很好地聚类。
原因:GAN聚类的一个可能的方式是将数据反向传播到隐空间,并在隐空间聚类。但是即使反向传播成功也无法很好地聚类。一个关键问题是反向投影的数据分布和隐空间的分布应该是相似的,通常是高斯分布或均匀分布。因此即使隐空间包含了数据的所有信息,但是隐空间向量之间的几何距离不能反映类别信息,因此无法很好地聚类。

二、本文的方法

网络模型:
clusterGAN网络模型
1.从离散连续混合中抽样:
z=(zn,zc),zn∼N(0,σ2Idn),zc=ek,k∼U{ 1,2,...,K}z=(z_n,z_c),z_n\sim N(0,\sigma ^2I_{d_n}),z_c=e_k,k\sim U\left\{1,2,...,K\right\}z=(zn,zc),znN(0,σ2Idn),zc=ek,kU{ 1,2,...,K},ek是K维的向量,其中第k维是1,即zn是正态分布,zc是K维的离散型one-hot向量,K是类别数量,二者联合构成离散-连续向量z。
经过试验证明,相比于均匀分布、正态分布、高斯混合分布,从离散连续混合中抽样的聚类效果更好。从不同分布中采样得到的隐空间分布如下图所示:
从不同分布中采样得到的隐空间分布
2. 基于改进的反向传播解码
为了获得更好的隐向量,已有的工作是解决一个优化问题:z∗=arg minzL(G(z),x)+λ∣∣z∣∣pz^*=arg\space min_zL(G(z),x)+\lambda ||z||_pz=arg minzL(G(z),x)+λzp,其中L是适宜的损失函数,但是这个方法对聚类是不够的。
在本论文中,我们让L(G(z),x)=∣∣G(z)−x∣∣1L(G(z),x)=||G(z)-x||_1L(G(z),x)=G(z)x1,惩罚项为∣∣zn∣∣22||z_n||^2_2zn22,只惩罚正态部分。再抽样K次,每次用不同的zc进行抽样,在优化时固定zc,用Adam优化正态部分。
3.使用线性分类器可以获得更好的聚类效果

引理:Clustering with only zn cannot recover a mixture of gaussian data in the linearly generated space. Further ∃ a linear G(·) mapping discrete-continuous mixtures to a mixture of Gaussians.

证明:
如果隐空间只包含连续部分,即z=zn∼N(0,σ2Idn)z=z_n\sim N(0,\sigma ^2I_{d_n})z=z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值