文章摘要:
我们引入了一种新的多路点云拼接框架(命名为Wendnesday),旨在将部分重叠的点云集(通常从3d扫描仪或移动rgb-d相机获得)协同对齐到一个统一的坐标系中。我们方法的核心是 odin,这是一种学习的成对配准算法,它迭代地识别重叠和细化注意力分数,采用基于扩散的过程对成对相关矩阵进行去噪以提高匹配精度。进一步的步骤包括从所有点云构建姿势图,执行旋转平均,这是一种新的鲁棒算法,用于在共识最大化和翻译优化方面最佳地重新估计翻译。最后,通过基于扩散的方法联合优化点云旋转和位置。在四个不同的大规模数据集上进行测试,我们的方法在所有基准测试中都大大超过了最先进的成对和多路配准结果。我们的代码和模型可在 https://github.com/jinsz/multiway-point-cloudosaicking-with-diffusion-and-global-optimization 获得结论:我们提出了Widnesday,一种用于多路点云拼接的新框架,否则,将点云的集合对齐到一个统一的坐标系中。它从一种新的成对配准方法(odin)开始,与最先进的配准方法相比,该方法提供了更准确的结果。该管道进行旋转和平移平均,以建立每个点云的全局姿态。我们还结合了全局最优的鲁棒翻译重新估计算法,以确保在获得全局方向后成对翻译的精度。最后,基于扩散的优化方法最终实现了输出姿势。该管道比最先进的算法有了实质性的改进,例如 nss 数据集上的旋转误差减少了 80%。在所有测试的大规模数据集上,一致且显着的改进将所提出的算法定位为成对和多路点云配准的新基准。
目前存在的问题: