几何深度学习:
结合几何学(或拓扑学)与深度学习,以便处理具有复杂结构和拓扑特性的非欧几里得数据,如点云、网格、图谱、流形等。按照数据结构的不同,几何深度学习涵盖了集合学习、图学习、拓扑深度学习、群等变神经网络等内容。事实上,当前使用最广泛的深度学习模型Transformer在数学形式上是一种特殊的集合函数,蕴含了顺序不变性、全连接图等几何拓扑先验。
目前新颖的研究:
等变图扩散模型Chroma,创造了自然界中以前未发现的具有可编程特性的新型蛋白质(Ingraham, Baranov et al., 2023)
2023年图灵奖得主Yoshua Bengio与数十位人工智能专家在顶级学术期刊《Nature》上发表综述论文,指出几何深度学习是科学智能研究的重要工具之一 (Wang et al., 2023)。Wang, Hanchen, et al. "Scientific discovery in the age of artificial intelligence." Nature 620.7972 (2023): 47-60.
谷歌DeepMind公司基于图神经网络构建了一种晶体材料稳定性预测模型GNoME,发现了多达220万种理论上稳定的新型材料(Merchant et al., 2023)