-
空间域方法:
- 加权平均法:通过加权平均源图像来进行融合,权重通常根据像素的活动水平确定,如使用SVM、神经网络和密集尺度不变特征变换(SIFT)等方法。
- 块基和区域基融合策略:选择源图像中的图像块或分割区域进行融合,但容易在对象边界产生块状伪影或依赖分割精度。
-
变换域方法:
- 多尺度分解:如离散小波变换(DWT)、双树复小波、曲线波和非下采样轮廓波变换(NSCT)等,用于在变换域中结合源图像信息。
- 稀疏表示:模拟人类视觉系统的稀疏编码机制,成功应用于各种图像融合问题。
-
基于梯度的方法:
- 结构张量:用于描述图像对比度,适用于任意维度的图像。Finlayson等人提出了无需重新积分的图像融合方法,避免了重新积分带来的伪影。
- 变量分裂技术:通过定义结构张量的目标函数,使用变量分裂技术进行优化。
-
基于卷积神经网络(CNN)的方法:
- 监督学习方法:如Liu等人训练分类器区分聚焦和未聚焦图像,并计算融合权重图;Kalantari等人通过CNN从多曝光图像中获取色调映射和无鬼影的融合图像。
- 无监督学习方法:如DenseFuse和DeepFuse,分别使用预训练的自动编码器和无参考质量度量作为损失函数进行融合。
-
其他相关研究:
- 生成对抗网络(GAN):如FusionGAN,通过生成对抗网络生成融合图像,结合主要红外强度和可见光梯度。
- 多曝光图像融合:通过结合一系列低动态范围(LDR)图像生成高动态范围(HDR)图像,如GRW、FMMR和GFF等方法。