相机校参及C-arm校参 Camera calibration & X-ray calibration 06

本文介绍了一种利用棋盘格图像进行相机内在和外在参数校准的方法,指出使用至少3张图片可以获得较好的校准效果。此外,文章还讨论了Zhang在X射线校准领域的贡献,其研究在学术界获得了广泛引用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相机校参及C-arm校参 Camera calibration & X-ray calibration 06

reference[1] A Flexible New Technique for Camera. Calibration. Zhengyou Zhang. December 2, 1998. (updated on December 14, 1998). (updated on March 25, 1999)
文献中推荐了一个方法,用chessboard图像来校准intrinsic和extrinsic参数,根据软件测试数据,测试图片数目在3张时可以达到一个相对好的效果,继续增加校准图像,对deviation error的减少帮助较少,下面推演中可以推测到这个现象的原因。另外Zhang还在X-ray校准上有许多贡献,文章得到了很多citation。

首先chessboard面是X-Y组成的平面,所以根据上两篇文章的内容,一个面是无法解决所以parameter的,所以肯定要两张或以上的图片。在X-Y组成的平面中,因为Z=0,所以第三列可以去掉了。
在这里插入图片描述
根据rotation matrix的性质,r1和r2是orthogonal的,模量范数为1(具体原因可以查一下rotation矩阵的推导)。这两个限制条件可以写出两个constraint的observation。
在这里插入图片描述

在这里插入图片描述
B可以用Chol(B)来decomposition。由此可以求解处K矩阵。另外可以看到B是个symmetric matrix。一共6个未知数。所以,一个平面确定两个observation,6个未知数需要3个平面,所以需要至少三张照片来求解B。
在这里插入图片描述
By multiplication, 上述hBh的方程可以写成下面Vb=0的形式。
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值