ResUnet++

ResUnet++是一种针对结肠镜图像分割的深度学习架构,它整合了残差块、SE模块、ASPP模块和注意力机制。残差块缓解梯度消失问题,SE模块增强通道间依赖,ASPP模块提供多尺度信息。该网络设计有助于提高结肠直肠息肉分割的精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ResUnet++是一种用于结肠镜图像分割的改进ResUnet架构。总的来说本文的贡献在于

1)本文提出了一种新的resunet++架构,它是一种利用残差块,SE模块,ASPP模块和注意力块的语义分割神经网络

2)创建了新的数据集。

ResUnet++

提出的resunet++体系结构利用了残差块、SE模块、ASPP模块和注意力块

残差块在层上传播信息,允许建立一个更深层次的神经网络,可以解决每个编码器中的退化问题(梯度消失的问题)。这提高了信道的相互依赖性,同时降低了计算成本。提出的resunet++架构包含一个茎块,后面跟着三个编码器块、ASPP和三个解码器块。

提出的ResUnet++的体系框架结构图如下所示:

每个编码器块由两个连续的3x3的卷积块和一个单位映射组成,每个卷积块包括BN层,Relu层和卷积层。在编码器块的第一卷积层应用跨步卷积层将特征映射的空间维数降低一半。编码器块的输出通过SE模块传递。ASPP充当了一个桥梁,扩大了卷积核的视野,以包括更广泛的背景。

解码器相对应的也由残差单元组成,在每个解码器单元之前,注意力模块增加了特征映射的有效性。接下来是对较低级别的特征映射进行上采样,并与对应编码路径的特征映射进行连接。解码器的输出通过ASPP模块进行连接,最后应用1x1的Sigmod激活卷积,得到分割图。

残差单元

深度神经网络的训练相对具有挑战性。随着网络深度的增加,训练深度神经网络可以提高准确率。但是同时过深的网络会造成梯度消失的问题。残差单元使得网络易于训练,单元内部的残差连接有助于在不退化的情况下传播信息。

SE模块

SE模块通过使用通道之间的精确建模相互依赖关系重新校准特征响应,SE模块的目标是为了能够确保网络能够增加其对相关特征的敏感性,并抑制不必要的特征。这个目标分两步实现。第一步是压缩(全局信息嵌入),通过使用全局平均池来生成按通道的统计信息来压缩每个通道。第二步是激励(有源校准),旨在完全捕获通道依赖性。在提出的体系结构中,挤压和激励块与剩余块叠加在一起,以增加对不同数据集的有效泛化,提高网络的性能。

ASPP模块

ASPP模块的思想来自于空间金字塔池化,它成功的在多个尺度上重新采样特征。在ASPP模块中,上下文信息以不同的比例和输入特征图中许多不同膨胀系数的膨胀卷积进行融合。

结论

在本文中,我们提出了resunet++,这是一种解决结肠镜检查中发现的结肠直肠息肉更精确分割需求的架构。所建议的体系结构利用了残差单元和SE模块、ASPP和注意力单元。

03-23
### ResUNet 架构实现及其应用 ResUNet 是一种结合了残差网络(ResNet)和 U-Net 的架构设计,旨在通过引入跳跃连接来增强特征传播并缓解梯度消失问题。以下是关于 ResUNet 的具体介绍以及其在不同领域中的实际应用场景。 #### 1. ResUNet 基本结构 ResUNet 结合了 ResNet 和 U-Net 的优点,在编码器部分采用类似于 ResNet 的残差模块,而在解码器部分则利用跳过连接将低层特征传递到高层。这种设计使得模型能够更好地捕捉细节信息,并提高分割精度[^3]。 ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPooling2D, concatenate, UpSampling2D, Input def res_block(x, filters, kernel_size=3, strides=1): """定义一个简单的残差块""" residual = x # 主路径卷积操作 conv_1 = Conv2D(filters=filters, kernel_size=kernel_size, padding='same', strides=strides)(x) norm_1 = BatchNormalization()(conv_1) act_1 = Activation('relu')(norm_1) conv_2 = Conv2D(filters=filters, kernel_size=kernel_size, padding='same')(act_1) norm_2 = BatchNormalization()(conv_2) # 如果输入形状发生变化,则调整残差分支 if strides != 1 or residual.shape[-1] != filters: residual = Conv2D(filters=filters, kernel_size=1, strides=strides, padding='same')(residual) output = tf.add(residual, norm_2) return Activation('relu')(output) def upsample_concatenate(x, skip_connection): """上采样并与跳过连接拼接""" up = UpSampling2D(size=(2, 2))(x) concat = concatenate([up, skip_connection], axis=-1) return concat def build_resunet(input_shape): inputs = Input(shape=input_shape) # 下采样阶段 c1 = res_block(inputs, 64, strides=1) p1 = MaxPooling2D((2, 2))(c1) c2 = res_block(p1, 128, strides=1) p2 = MaxPooling2D((2, 2))(c2) c3 = res_block(p2, 256, strides=1) p3 = MaxPooling2D((2, 2))(c3) # 中间桥接层 bridge = res_block(p3, 512, strides=1) # 上采样阶段 u1 = upsample_concatenate(bridge, c3) u1 = res_block(u1, 256) u2 = upsample_concatenate(u1, c2) u2 = res_block(u2, 128) u3 = upsample_concatenate(u2, c1) u3 = res_block(u3, 64) outputs = Conv2D(1, (1, 1), activation="sigmoid")(u3) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) return model ``` 上述代码展示了如何构建一个基本的 ResUNet 模型。它包含了多个残差块用于提取更深层次的特征表示,同时也保留了原始图像的空间分辨率以便于后续的任务需求[^4]。 #### 2. 应用场景分析 ResUNet 已被广泛应用于医学影像处理、遥感数据分析等领域: - **医学影像分割**:由于医疗数据通常具有复杂的纹理模式和较小的目标区域,因此需要高精度的方法来进行器官或者病变部位识别。ResUNet 可以有效解决这些问题并通过增加深度进一步提升性能表现[^5]。 - **卫星图像分类与目标检测**:对于大规模地理空间监测任务来说,精确划分土地覆盖类别至关重要。借助该框架可自动完成建筑物轮廓描绘等工作流程从而节省大量人工成本支出时间周期较长的传统手段无法比拟的优势所在之处显而易见[^6]。 #### 总结 综上所述,ResUNet 不仅继承了传统 UNets 所具备的优点同时还融入了现代 CNN 技术精华使其成为当前最前沿的研究方向之一值得深入探索实践验证效果究竟如何取决于具体项目背景条件限制等因素影响最终决定方案取舍与否需综合考量多方意见后再做定夺。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值