文章目录
一 Flink运行架构
1 任务调度原理
(1)TaskManger与Slots
Flink中每一个worker(TaskManager)都是一个JVM进程,它可能会在独立的线程上执行一个或多个subtask。为了控制一个worker能接收多少个task,worker通过task slot来进行控制(一个worker至少有一个task slot)。
每个task slot表示TaskManager拥有资源的一个固定大小的子集。假如一个TaskManager有三个slot,那么它会将其管理的内存分成三份给各个slot。资源slot化意味着一个subtask将不需要跟来自其他job的subtask竞争被管理的内存,取而代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的受管理的内存。
通过调整task slot的数量,允许用户定义subtask之间如何互相隔离。如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。
默认情况下,Flink允许子任务共享slot,即使它们是不同任务的子任务(前提是它们来自同一个job)。 这样的结果是,一个slot可以保存作业的整个管道。
Task Slot是静态的概念,是指TaskManager具有的并发执行能力**,可以通过参数taskmanager.numberOfTaskSlots进行配置;而**并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率。
并行度的设置见以下程序:
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 整体并行度设置为1
env.setParallelism(1);
// 设置局部并行度为1
DataStreamSource<String> stream = env.fromElements("hello word", "hello word").setParallelism(1);
// 设置局部并行度为2
SingleOutputStreamOperator<WordWithCount> mappedStream = stream
.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] arr = value.split(" ");
for (String s : arr) {
out.collect(new WordWithCount(s, 1L));
}
}
}).setParallelism(2);
// 分组:按照key进行分区,与并行度无关
KeyedStream<WordWithCount, String> keyedStream = mappedStream
.keyBy(new KeySelector<WordWithCount, String>() {
public String getKey(WordWithCount value) throws Exception {
return value.word;
}
});
// 设置局部并行度为2
SingleOutputStreamOperator<WordWithCount> result = keyedStream
.reduce(new ReduceFunction<WordWithCount&g