使用python计算AI天气预报中的ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)

本文用以记录python计算AI天气预报中的ACC代码,其中使用的气候态数据需要用户自己去谷歌云存储中下载

一、ACC介绍与计算公式

原始文章:https://blog.csdn.net/m0_52317152/article/details/135452342

通过计算预报与观测之间的相关性,来衡量预报系统质量。

由于季节变化,直接将预报与观测或分析相关联可能会给出误导性的高值。因此,通常的做法是从预报和验证中减去气候平均值,并根据异常相关系数(ACC)来验证预报和观测的异常。ACC最简单的形式可以写成:
A C C = ( f − c ) ( a − c ) ‾ ( f − c ) ‾ 2 ( a − c ) ‾ 2 ACC=\frac{\overline{(f-c)(a-c)}}{\sqrt{\overline{(f-c)}^2\overline{(a-c)}^2}} ACC=(fc)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值