动态规划之最长公共子序(LCS)

本文深入探讨了最长公共子序列(LCS)问题,通过动态规划解决两个序列的最长公共子序列寻找问题,介绍了算法的设计思路、转移方程及其实现代码,分析了其时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

给定两个序列X=<x1,x2,…,xm>和Y=<y1,y2,…,yn>,求X和Y长度最长的公共子序列。

解析

最长公共子序是动态规划的典型问题之一,可以依靠dp取得较暴力算法极为优秀的时间复杂度,在推导过程时会依靠S1=13456778,S2=357486782这组样例。
在这里插入图片描述

其中会记录dp[i][j],表示S1中的1-i序列和S2中1-j序列的最长公共子序。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

设计

对于动态规划的代码,只需要明白它的转移方程,dp[i][j]表示S1中的1-i序列和S2中1-j序列的最长公共子序。
在这里插入图片描述

分析

考虑复杂度,该算法的时间复杂度主要需要考虑其中的两层循环,当S1的长度为n,S2的长度为m,时间复杂度为O(nm)。

源码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
#include<vector>
#include<queue>
#include<cmath>
#include<stack> 
#include<map>
#include<deque>
using namespace std;
typedef long long ll;
#define eps 1e-8
#define pi acos(-1.0)
template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F&&(num=-num);
}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
inline ll qpow(ll a,ll b,ll p){ll res=1;while(b){if(b&1){res*=a;res%=p;}b>>=1;a=a*a%p;}return res;}
int lowbit(int x){return x&(-x);}
const int maxn=1200;
const int inf=0x3f3f3f3f;
const ll mod=998244353;

ll dp[maxn][maxn];
char s1[maxn],s2[maxn];
int main(){
 scanf("%s %s",s1+1,s2+1);
 int len1=strlen(s1+1),len2=strlen(s2+1);
 for(int i=0;i<=len1;i++) dp[i][0]=0;
 for(int i=0;i<=len2;i++) dp[0][i]=0;
 for(int i=1;i<=len1;i++){
  for(int j=1;j<=len2;j++){
   if(s1[i]==s2[j]){
    dp[i][j]=dp[i-1][j-1]+1;
   }
   else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
  }
 }
 printf("%lld\n",dp[len1][len2]);
}

Github:https://github.com/Geedhayb/Geed/blob/master/LCS.cpp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值