Docker部署Qwen2-vl-7b模型-vLLM

1、 拉取镜像

docker pull vllm/vllm-openai:latest

2、下载模型

我是运行本地代码的时候自动下载的,如果想直接下载我看网上的方式如下(作者与我下载的模型不一样,只看方法就行):
在这里插入图片描述
默认下载到的路径可以在配置文件~/.bashrc修改

export MODELSCOPE_CACHE="/mnt/datadisk0/suanfa/model_scope_cache"

3、编写dockerfile文件

在这里插入图片描述
Add后的Qwen2-VL-7B-Instruct是下载好的模型
这里的add后的模型路径一开始和dockefile文件路径不一致,docker build -t vllm_qwen2vl_7b:1.0 -f Dockerfile .一直报错
在这里插入图片描述
一直说路径不存在,但是我实际存在,网上查找原因:
在这里插入图片描述
于是我把dockerfile文件创建在了与模型同级目录下

4、构建镜像

docker build -t vllm_qwen2vl_7b:1.0 -f Dockerfile .

查看构建的镜像:
在这里插入图片描述

5、启动容器

docker run -itd --runtime nvidia --gpus all --name vllm_qwen2vlm --env "HUGGING_FACE_HUB_TOKEN=123" -p 8000:8000 vllm_qwen2vl_7b:1.0

查看运行的容器:

### Qwen2-7B-Instruct-AWQ与vllm的使用说明 #### 下载文档 对于希望利用`Qwen2-VL-7B-Instruct-AWQ`模型并借助`vllm`工具来提升性能的研究者或开发者而言,获取必要的资源是第一步。可以从指定的项目地址下载所需材料[^1]。 #### 安装配置环境 安装过程中涉及创建适合运行模型及其优化器`vllm`的工作环境。通常建议通过Docker容器化技术简化这一过程,确保不同操作系统上的兼容性和一致性[^2]。具体操作如下: ```bash docker pull registry.gitcode.com/hf_mirrors/ai-gitcode/qwen2-vl-7b-instruct:latest docker run -it --gpus all -p 8000:8000 qwen2-vl-7b-instruct bash ``` 上述命令用于拉取最新的镜像文件,并启动带有GPU支持的服务端口映射到本地8000端口上。 #### 升级vllm包 为了保持最佳实践状态以及获得最新特性,在实际部署前应当确认已安装版本是最新的。可以通过pip工具轻松完成更新动作[^3]: ```bash pip install --upgrade vllm ``` 此指令会自动处理依赖关系并将软件包升级至最高稳定版。 #### 示例代码展示 下面给出一段简单的Python脚本作为实例,展示了如何加载预训练好的`Qwen2-VL-7B-Instruct-AWQ`模型并通过`vllm`执行推理任务: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("qwen2-vl-7b-instruct-awq") model = AutoModelForCausalLM.from_pretrained("qwen2-vl-7b-instruct-awq", device_map="auto") input_text = "描述一张美丽的风景画" inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 这段程序实现了从输入提示词到生成对应描述的过程,其中包含了调用CUDA加速计算的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值