文章目录
简介
Van der Waerden’s Normal Scores检验是一种非参数检验方法。在计算过程中,它首先把数据转换秩序,然后再转换成标准的正态分布分位数。因此它可以适用于非正态分布。
零假设 H 0 H_0 H0:所有k个总体分布函数都是相等的;
备择假设 H 1 H_1 H1:在k个总体分布函数中,至少有一个与其它分布不相等,并且倾向对其他分布函数产生更大的观测值。
计算过程
正态得分
A
i
j
A_{ij}
Aij可按下式计算,
A
i
j
=
Φ
−
1
(
R
(
X
i
j
)
N
+
1
)
A_{ij} = \Phi^{-1} \left( \frac{R \left( X_{ij} \right)}{N + 1} \right)
Aij=Φ−1(N+1R(Xij))
其中
X
i
j
X_{ij}
Xij代表第
i
i
i组的第
j
j
j个变量值,
R
R
R为取其对应的秩,
N
N
N代表
j
j
j的总数目,
Φ
−
1
\Phi^{-1}
Φ−1代表正态分布的分位数函数。
那么
k
k
k组的
A
i
j
A_{ij}
Aij的均值可写作,
A
ˉ
j
=
1
n
j
∑
i
=
1
n
j
A
i
j
j
=
1
,
2
,
⋯
,
k
\bar{A}_j = \frac{1}{n_j} \sum^{n_j}_{i=1} A_{ij} \quad j = 1, 2, \cdots, k
Aˉj=nj1i=1∑njAijj=1,2,⋯,k
正态得分的方差
s
2
s^2
s2为
s
2
=
1
N
−
1
∑
i
=
1
k
∑
j
=
1
n
i
A
i
j
2
s^2 = \frac{1}{N - 1} \sum^k_{i=1} \sum^{n_i}_{j=1} A^2_{ij}
s2=N−11i=1∑kj=1∑niAij2
Van der Waerden’s Normal Scores的统计值
T
1
T_1
T1,
T
1
=
1
s
2
∑
i
=
1
k
n
i
A
ˉ
i
2
T_1 = \frac{1}{s^2} \sum^k_{i=1} n_i \bar{A}_i^2
T1=s21i=1∑kniAˉi2
上式可以近似为卡方分布,显著性水平的临界区域为
α
\alpha
α,
T
1
=
χ
α
,
k
−
1
2
T_1 = \chi^2_{\alpha, k-1}
T1=χα,k−12
如果
H
0
H_0
H0,可以进行事后多重比较试验,以更好地了解哪些种群与其他人不同。
用于正态化-单组情况
有时候我们只想将某一组数据的秩序转换为正态分布,只需去上述过程中的一部分,计算过程如下。
A
j
=
Φ
−
1
(
R
(
x
j
)
N
+
1
)
A_j=\Phi^{-1} \left( \frac{R(x_j)}{N + 1} \right)
Aj=Φ−1(N+1R(xj))
参考文献
【1】Practical Nonparametric Statistics, 3rd 3rd Edition
【1】https://aaronschlegel.me/van-der-waerdens-normal-scores-test.html