Van der Waerden‘s Normal Scores检验

VanderWaerden’s Normal Scores检验是一种非参数方法,用于比较多个总体分布是否相等。它通过将数据秩转换为正态分布分位数来实现。计算涉及计算每个组的正态得分均值和方差,进而得到统计值T1,该值可用于假设检验。若H0被拒绝,则表明至少有一个总体分布与其他不同。此外,该方法也适用于单组数据的正态化处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Van der Waerden’s Normal Scores检验是一种非参数检验方法。在计算过程中,它首先把数据转换秩序,然后再转换成标准的正态分布分位数。因此它可以适用于非正态分布。

零假设 H 0 H_0 H0:所有k个总体分布函数都是相等的;

备择假设 H 1 H_1 H1:在k个总体分布函数中,至少有一个与其它分布不相等,并且倾向对其他分布函数产生更大的观测值。

计算过程

正态得分 A i j A_{ij} Aij可按下式计算,
A i j = Φ − 1 ( R ( X i j ) N + 1 ) A_{ij} = \Phi^{-1} \left( \frac{R \left( X_{ij} \right)}{N + 1} \right) Aij=Φ1(N+1R(Xij))

其中 X i j X_{ij} Xij代表第 i i i组的第 j j j个变量值, R R R为取其对应的秩, N N N代表 j j j的总数目, Φ − 1 \Phi^{-1} Φ1代表正态分布的分位数函数。
那么 k k k组的 A i j A_{ij} Aij的均值可写作,
A ˉ j = 1 n j ∑ i = 1 n j A i j j = 1 , 2 , ⋯   , k \bar{A}_j = \frac{1}{n_j} \sum^{n_j}_{i=1} A_{ij} \quad j = 1, 2, \cdots, k Aˉj=nj1i=1njAijj=1,2,,k
正态得分的方差 s 2 s^2 s2
s 2 = 1 N − 1 ∑ i = 1 k ∑ j = 1 n i A i j 2 s^2 = \frac{1}{N - 1} \sum^k_{i=1} \sum^{n_i}_{j=1} A^2_{ij} s2=N11i=1kj=1niAij2
Van der Waerden’s Normal Scores的统计值 T 1 T_1 T1
T 1 = 1 s 2 ∑ i = 1 k n i A ˉ i 2 T_1 = \frac{1}{s^2} \sum^k_{i=1} n_i \bar{A}_i^2 T1=s21i=1kniAˉi2
上式可以近似为卡方分布,显著性水平的临界区域为 α \alpha α
T 1 = χ α , k − 1 2 T_1 = \chi^2_{\alpha, k-1} T1=χα,k12
如果 H 0 H_0 H0,可以进行事后多重比较试验,以更好地了解哪些种群与其他人不同。

用于正态化-单组情况

有时候我们只想将某一组数据的秩序转换为正态分布,只需去上述过程中的一部分,计算过程如下。
A j = Φ − 1 ( R ( x j ) N + 1 ) A_j=\Phi^{-1} \left( \frac{R(x_j)}{N + 1} \right) Aj=Φ1(N+1R(xj))

参考文献

【1】Practical Nonparametric Statistics, 3rd 3rd Edition
【1】https://aaronschlegel.me/van-der-waerdens-normal-scores-test.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值