数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多的文件格
式,如CSV、SQL、EXCEL、JSON、 HDF5。
1. csv文件
pandas.read_csv(filepath_or_buffer, sep =',', usecols )
filepath_or_buffer:文件路径 sep :分隔符,默认用","隔开 usecols:指定读取的列名,列表形式
# 读取文件,并且指定只获取'open', 'close'指标
data = pd.read_csv("./data/stock_day.csv", usecols=['open', 'close'])
open close
02-27 23.53 24.16
02-26 22.80 23.53
02-11 22.88 22.82
02-22 22.25 22.28
02-14 21.49 21.92
DataFrame.to_csv(path_or_buf=None, sep=', ’, columns=None, header=True, index=True,
mode='w', encoding=None)
path_or_buf:文件路径 sep:分隔符,默认用","隔开 columns:选择需要的列索引
header:boolean or list of string,default True,是否写进列索引值
index:是否写进行索引 mode:'w' 重写,'a' 追加
# 选取10行数据保存,便于观察数据
data[:10].to_csv("./data/test.csv", columns=['open'])
# 读取,查看结果
pd.read_csv("./data/test.csv")
Unnamed: 0 open
0 02-27 23.53
1 02-26 22.80
2 02-23 2